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Monte Carlo Study of the Order-Parameter Distribution in the Four-Dimensional Ising Spin Glass
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We investigate the order-parameter distribution, P(q), of the Ising spin glass with nearest-neighbor
interactions in four dimensions using Monte Carlo simulations on lattices of linear dimension up to L 6.
We find that, below the transition temperature, T„ the weight at small q seems to saturate to a nonzero
value as the size increases, similar to the infinite-range Sherrington-Kirkpatrick model. We discuss our
results in the light of recent theoretical predictions for the nature of the spin-glass phase.
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There is by now a fair amount of data supporting the
existence of a nonzero transition temperature in three-
dimensional spin glasses, at least for Ising or anisotropic
systems. ' The nature of the low-temperature, spin-

glass phase remains unclear, however. For the infinite-

range Sherrington-Kirkpatrick (SK) model, the predic-
tion of the Parisi solution' ' is that there are distinct
thermodynamic states, unrelated by symmetry, with free
energies which differ from one another by an amount of
order unity in the thermodynamic limit. Hence many
states contribute to the statistical sum and should be in-

corporated into a description of the problem.
Of course the infinite-range interactions in the SK

model are quite artificial so its properties are not neces-
sarily similar to those of more realistic models with

short-range interactions. In fact, recent ideas based on a
droplet model' and a related picture arising from
domain-wall renormalization-group (DWRG) argu-
ments, ' augmenting the ideals of McMillan, ' suggest
that short-range systems are quite different in that they
have only two thermodynamic states related by a global
spin fiip. With free or periodic boundary conditions,
these states may be characterized by an order-parameter
distribution, P(q), defined in Eq. (I) below, which con-
sists only of 8 functions at the values q ~qE&, where

qE& is nonzero below the transition. In contrast, the Par-
isi result for P(q) in the SK model has, in addition to the
8' functions, a continuous part extending to q 0, i.e.,
P(0)e0 in the thermodynamic limit. " In this paper we

use Monte Carlo simulations to investigate whether the
Parisi result holds for the four-dimensional nearest-
neighbor Ising spin glass or whether it instead follows
the behavior predicted by the droplet-DWRG picture ac-
cording to which P(0) 0 in the thermodynamic limit.

One convenient way to determine if many states con-
tribute to the equilibrium statistical-mechanics descrip-
tion of the system is through the order-parameter distri-

P, exp( PF, )/Z, — (2)

with F, the free energy of the state and Z the partition
function defined by

Z +exp( —PF, ), (3)

and q'~ is the "overlap" between states a and p; i.e.,

q't' =—pm, 'm,',1

where m is the magnetization of site i when the system
is constrained to be in the state a, and N is the number
of spins. We use ( ) to denote the statistical-
mechanics average for a single sample, and [ ],„ to
indicate the average over bond configurations.

If there is just a single thermodynamic state other
than states related by a global symmetry, as happens in

conventional systems, then P(iq i ) is just a single b

function at q", which we shall call qp~ from now on, the
"self-overlap" of the state with itself. Clearly in this
limit it is unnecessary to describe the order parameter by
a distribution and the single number qz~ suffices. How-
ever, the Parisi solution of the SK model predicts that, in

addition to a 8-function peak at qE&, there is a continu-
ous part extending down to zero q (in zero field) coming
from overlaps between diNerent states. For any one
bond configuration there are only a finite number of
states contributing with significant statistical weight, '

so P(q) for one sample has only a finite set of b func-
tions of significant weight, but the position and weight of

bution P(q) defined by

P(q) =—g((P,Ppb(q —q'~))l„,1

X,,p

where a and p denote thermodynamic states and P, is

the Boltzmann statistical weight of this state; i.e.,
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these differ for different bond configurations so the bond
average smears out all peaks into a continuum, except
for the one at qz& which is self-averaging.

It has been pointed out' that the question of many
thermodynamic states and the existence of a nontrivial

P(q) are not precisely the same and one can find exam-
ples, such as the random-field Ising model below T„ for
which P(q) has just a single b function but there are ac-
tually two inequivalent thermodynamic states. The one
with higher free energy does not appear in P(q) because
it is higher by an amount of order N 't, and so does not
contribute to the Boltzmann average. Nonetheless, we

feel that P(q) is an interesting quantity to calculate for
the following reason. The question of the nature of the
low-energy excited states in a spin glass and their corre-
lation with the ground state is of paramount importance.
If P(q) has a tail down to q =0 below T„ then there are
clusters containing a finite fraction of the spins of the
system which can be flipped with only a finite cost in en-

ergy. Thus P(q) is a useful probe of low-energy excita-
tions at large length scales. In addition, it is easy to cal-
culate microscopically, as we shall see, without having to
determine the diff'erent thermodynamic states for each
bond configuration, which appears to be very difficult
from simulations on small lattices.

We consider the standard model of Edwards and An-
derson" for which the Hamiltonian is

H= —g J~)S;S, ,
&i,j &

(5)

where S; are Ising spins, S; = +'1, on each site of a regu-
lar lattice and J;, are independent random interactions
with a symmetric distribution and are non zero for
nearest neighbors only. We use a Gaussian distribution
and choose the temperature scale by setting the standard
deviation to unity. Periodic boundary conditions are ap-
plied. We work on a four-dimensional simple cubic lat-
tice, rather than in three dimensions, because d=3 is

fairly close to the lower critical dimension so T, in 3D is

rather low, the relaxation times are very long, and, as a
result, even locating the transition itself is difficult. Here
we wish to investigate the region below T, where the
problem of long relaxation times is even more severe. In
addition, the droplet-DWRG picture' ' predicts that
P(0) vanishes with the linear lattice size, L, as L
where the exponent 0 vanishes at the lower critical di-
mension and so is expected to be much smaller in three
than in four dimensions. Hence, even apart from equili-
bration problems, it would be very hard to see the van-

ishing of P(0) on small lattices in three dimensions. In
four dimensions, the transition temperature is higher and
easy to locate by Monte Carlo simulations even with
modest computer time. Hence a study below T, is pos-
sible, though this now needs a substantia/ numerical
eAort because of the longer relaxation times. Further-
more, we expect that there is a lower critical dimension
below which P(0) vanishes, so that if we see a vanishing

of P(0) in four dimensions, it should also vanish in 3D.
Hence 40 results can tell us about the likely behavior in

three dimensions.
To calculate P(q) it is convenient to simulate two

copies of the system with the same bonds but with no in-

teraction between them. After equilibrating with t p

sweeps the simulation proceeds for an additional t~
sweeps, where tM ) to, and P(q) is calculated from

P(q) = Q S(q —g(t))
~Mt 1 BV

where

(6)

(7)

is the instantaneous mutual overlap between the spins in

the two replicas. Here St'i(to+ t) denotes spin i in copy"1"after to+ t sweeps. It is straightforward to show, us-

ing the result that connected correlation functions vanish

at large separations in a single pure state, that this mi-

croscopic definition goes over to the macroscopic one,
Eq. (I), in the thermodynamic limit. We used the same
technique for equilibration described in our earlier
work, namely, to compute P(q) and its moments both

by the overlap between two replicas at the same time, as
in Eq. (6) above, and from the same replica at two dif-
ferent times. These two measurements give results
which approach the equilibrium value from opposite
sides.

The mean-field transition temperature is given by

T, '=vz, where z is the coordination number, which

yields T, =2.83 with z=8, which is appropriate here.
This should be compared with the actual transition tem-

perature, T, =-I.75. Here we study temperatures from
the vicinity of T, down to T=1.2, which is the lowest
temperature at which we can equilibrate a reasonable
range of sizes. The sizes studied are 2(L (6 and we

generally took the measurement time t~ to be twice the
equilibration time tp. For L=6 and T=1.2 we set
to=10, while higher temperatures and smaller sizes
needed shorter runs. The number of samples taken
varied between 1000 and 4800 depending on size and

temperature. It is essential to run a large number of
samples because there are big sample-to-sample varia-
tions in P(q), particularly in the small-q tail, which is

perhaps not surprising because the sample-to-sample
fluctuations are predicted to diverge for the SK model in

the thermodynamic limit. ' The computations were car-
ried out on forty T414 Transputers operating in a paral-
lel array with a performance of about 2x10 updates per
second.

In Fig. 1 we show our results for P(q) at T=1.2 for
sizes L =4 and 6, obtained both by the overlap between
the two replicas and by the two diA'erent times for one
replica, as discussed above. The two methods give very
close agreement for the whole distribution, which we
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FIG. l. A plot of P(q) for T 1.2. Data are shown for two

sizes: L 4 and 6. For each size there are two sets of points
representing data calculated by the two methods described in

the text, which are expected to agree with each other only
when the system has reached equilibrium. Since they do agree
with each other so well that the diA'erence is barely resolvable
in the figure, we infer that the system is well equilibrated.

take as evidence that the results represent thermal equi-
librium. It will be seen that there is a tail in the distri-
bution down to q=0 for both these sizes. Results for
P(0), averaged over a small range of q where the results

appear to be independent of q, are plotted against L in

Fig. 2 on a log-log plot for difTerent sizes and tempera-
tures. In the vicinity of T„P(0) increases as a power of
L, as expected from standard finite-size scaling theory
which predicts P(0)-L +" i at the critical point.
The solid line in Fig. 2 has a slope 0.75, which corre-
sponds to g= —0.5, close to the earlier estimate of
g= —0.3+0.15. At the lowest temperatures, however,
P(0) seems to be independent of size, as was found for
the SK model but diA'erent from the droplet-DWRG
prediction that P(0)-L . Note the downward curva-
ture of the results for T=1.6, i.e., just below T„which
comes from the crossover between critical behavior (for
small L and T close to T,) and the low-temperature re-
gion (for larger sizes and lower temperatures). Howev-

er, the curvature for temperatures T=1.2 and 1.4 is op-
posite to that for T=1.6 so we do not feel that the size
independence of the results at lower temperatures can be
explained by the proximity of the critical region. Hence
we believe that our results at the lower temperatures are
representative of the ordered state unless there are two
crossovers in the low-T phase.

In order to see if the apparent size independence of the
results is significant, we need to estimate roughly the ex-
pected value of 0. McMillan' finds that 0= —0.31 in
d=2 and 0.17 in d=3, while the corresponding values
given by Bray and Moore are similar, namely, —0.29
and 0.2. Estimating 0 in 1=4 by linearly extrapolat-

—1.0

In(L)

pn

ing these results or from the plausible formula 8= —,
'

&&(d —di), where the lower critical dimension, di, is

roughly equal to 2.6, one gets 8-0.7. Figure 2 shows a
dotted line with a slope —0.7 which is clearly incon-
sistent with the data at low T. Over this range of sizes
the data rule out a 8 larger than about 0.2, which is

roughly the value found in d=3.
To conclude, we have found that the order-parameter

distribution in a short-range Ising spin glass in four di-
mensions looks surprisingly like what one obtains for the
SK model; namely, there is a finite weight at q=0. This
means that there are large clusters making up a finite
fraction of the total number of spins which can be flipped
with only a finite cost in energy. This appears to be in

contradiction to the droplet-DWRG theories which pre-
dict that the energy to flip a cluster of linear dimension L
varies as L, which diverges as I. 0o, unless 0~0.2 in

4D. Of course, we cannot definitely rule out the possibil-
ity that the sizes studied are too small, and that there
may be a crossover to different behavior at larger sizes.
It is unclear to us, however, why there should be a large
crossover length scale. Another possibility is that, while
the droplet-DWRG theories describe the majority of

FIG. 2. A plot of ln(P{0)} vs ln(L) for sizes L between 2
and 6 and diA'erent temperatures, as indicated. The behavior
at T, 1.75+ 0.05 is expected to be a straight line with a slope
1+0.5ri (in four dimensions) as discussed in the text. The
solid line has a slope 0.75 which corresponds to q= —0.5,
which is to be compared with the earlier estimate (Ref. 7) of
—0.30+0.15. According to the droplet-DWRG theory, the
behavior below T, should be a straight line with a slope —8,
where 8 is an exponent which controls the (nontrivial) behavior
in the low-T phase. The dotted line has a slope —0.7, which is
a rough estimate of —8, as described in the text. The data at
low temperatures are clearly decreasing much slower than this
and are, indeed, essentially size independent except for the
smallest sizes.
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cluster excitations correctly, there may be more clusters
which can be flipped with a low-energy cost than ~ould
be naively expected. Whether, in the thermadynamic
limit, some large clusters can be flipped with zero-energy
cost cannot be unambiguously determined from results
on finite lattices. However, some results in this direction
have recently been obtained by Georges, Mezard, and

Yedidia, ' who find that P(0) of an infinite-range model

with finite coordination number z increases within a 1 jz
expansion. To conclude, our results show that there is

some new and unexpected physics happening in the low-

temperature state of spin glasses: either there is a new

length scale or the droplet picture is missing some impor-
tant ingredient.
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