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Wave Chaos in Singular Quantum Billiard
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We present a solvable singular quantum billiard which displays fully developed wave chaos. Its level

statistics is investigated and proved to coincide with predictions of the Gaussian orthogonal ensemble of
random matrices. The corresponding wave functions are shown to be well approximated by a Gaussian
random variable.

PACS numbers: 05.45.+b, 03.65.—w

The statistical properties of quantum levels have at-
tracted much interest during the last few years in con-
nection with the speculation that it may reflect the de-

gree of order in the corresponding classical system. It
has been conjectured that the classically integrable sys-

tems lead to uncorrelated quantum levels (Poisson distri-
bution), while the eigenvalues of systems which are clas-
sically chaotic were assumed to have the same statistical
properties as the eigenvalues of random matrices belong-

ing to the Gaussian orthogonal ensemble (GOE) (Wig-
ner distribution). This fact has been confirmed in a
number of numerical studies performed on various model
Hamiltonians. ' Berry and Tabor showed that this
behavior of quantum levels is a consequence of the semi-
classical analysis and is indeed valid in a generic situa-
tion.

It is, however, well known that certain systems violate
the above-described correspondence: There are integr-
able systems which do not have a Poisson distribution
(for instance, a particle in a square well). Even worse,
recent numerical studies performed on pseudointegrable
billiards showed that one can find GOE statistics even in

systems which have nonchaotic classical physics.
These numerical results, though illustrative, cannot,

however, serve as proof that the reversed correspondence
(i.e., GOE statistics for classically nonchaotic systems)
indeed appears. The point is that the numerical data are
available only for the first N levels (N ~ 400 in a typical
situation). It can happen that the spectral statistics
change for high enough energies and become Poissonian
and hence in agreement with the folk wisdom. This was

also the way in which Cheon and Cohen explained their
finding. They argued that the GOE statistics change to
Poissonian when approaching the semiclassical regime.
On the other hand, the system studied in Ref. 7 consists
of a square billiard with a number of rectangular pieces
removed. But the presence of convex rectangular corners
makes the semiclassical limit of this system questionable.
The smallest relevant scale is represented by the edges of
the corners (which are in fact point objects) and the
semiclassical regime is expected to set in only for
E ~. One can therefore argue that the quantum
waves will be strongly influenced by the edges and, con-

sequently, that the GOE statistics will be present for all
energies.

It is therefore interesting to see whether one can find a
system where the influence of the measure-zero objects
like sharp edges can be investigated and where the re-
versed statistics can be proved to appear.

The motivation for constructing such a model comes
from the Sinai billiard where a point particle moves in-

side a rectangle well with a circular specularly reflecting
obstacle with radius R. Sinai proved that this system is
classically fully chaotic for all R & 0. The corresponding
quantum system has been investigated by Berry and
Bohigas, Giannoni, and Schmidt' who demonstrated
numerically that its level statistics coincide with the
GOE predictions. In such a way the Sinai billiard served
as a good prototype for the right connection between the
Hamiltonian of a quantized chaotic system and the
GOE.

Our argument goes as follows: We start with the
Sinai billiard and shrink the radius R of the circular obs-
tacle to zero, replacing it by a point scatterer. It is not
difficult to see that the classical system we obtain in such
a way is not chaotic. The point is that the classical tra-
jectories which are influenced by the scatterer are of
measure zero (these are simply the trajectories which hit
the scattering point) and cannot therefore rise the Kol-
mogorov entropy. In this sense the classical system does
not "feel" the point scatter.

The quantum system behaves, however, diff'erently:
The quantum waves are substantially influenced by the
point scatterer. One can therefore assume that the pres-
ence of the scatterer will eventually develop a wave chaos
similar to this in the quantized Sinai billiard with R )0.

Summarizing the above heuristic arguments on the
R 0 limit we get the following: The classical system
ceases to be influenced by the point scatterer and be-
comes nonchaotic while the quantum wave chaos is ex-
pected to survive and, as a result, the reversed level
statistic is expected to appear.

%e restrict ourselves now to the quantum case and
proceed to precise formulations. The first step in this
direction is to construct the corresponding quantum
Hamiltonian. The difficult point is, of course, the
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description of the point scatterer. In order to handle it

we will employ the theory of singular interactions. " The
relevant operator is then constructed as follows: We
start with the standard Hamiltonian H of the rectangu-
lar billiard 0,

H= —a,
D(H) = [fC L (Q); f=0 on bQ],

where 0 is the rectangle

Q= 0,—x[0, tr)
7r

'a

Let us investigate the spectrum of H, . To compute
the eigenvalues directly would be, however, a dificult
task. We will therefore employ the self-adjoint extension
theory and calculate the corresponding resolvent:

(H, —z) ' =(H —z)
) Ig, (x,y, xp, yp))

2R'0

1+2a z

x&g (xp, yp, x,y) I, (s)

where g-(x,y, x',y') is the Green's function of H,

[(H —z) f](x,y) = g. (x,y, x',y')f(x', y')dx'dy',

(6)
with a being a positive irrational number (we take
a= J5 —

1 in all numerical calculations). We remove

now the relevant scattering point (xp,yp) 6 Q restricing
Hto Hp,

and g(z) is a meromorphic function given by

4asin (naxp)sin (myp)
g z n-in-i tt(n a +m —z) 2m

(7)

Hp=H I Dp

with

Dp = [f& D(H); f=0 in some

(2) The spectrum of H, now can be obtained by investigat-
ing the pole structure of the resolvent: It is determined
by the transcendental equation

neighborhood of the point(xp, yp)] .

H, = —h, ,

D(H, ) [fC L (Q); f=0 on bQ, Lp(f) =aL~(f)],
with Lp, L

~
defined as

Lp(f) = lim
f(x,y)

p- p lnp
(4)

L (f)1= lim [f(x,y) —Lp(f)inp],
p~p

and

p[(xx)2+(yy)2) I /2

The parameter a, a C ( —~,~), can be interpreted as
the coupling constant of the point scatterer placed at
(xp,yp). (One can also obtain the operator H, by direct-
ly performing the limit R 0; see Ref. 13 for details. )

The wave dynamics governed by H, is most easily un-
derstood in an analogous electromagnetic model, where
it describes the transverse modes of an electromagnetic
field propagating inside a rectangular waveguide with
perfectly conducting walls (Dirichlet boundary condi-
tions on BQ). In this case the point scatterer is realiz-
able by a straight charged wire which is placed inside the
waveguide parallel to its walls. The coupling constant a
is then connected with the charge of the wire.

What we get in such a way is a symmetric operator
which is, however, not self-adjoint. In order to get the
desired Hamiltonian we have to specify what is going on
when the particle hits the point (xp,yp). This question is

formally solved by constructing the self-adjoint exten-
sions of Hp. At this point the self-adjoint extension

theory developed by von Neumann can be applied:' We
finally get a one-parameter family of Hamiltonians H„

(3)

I+2ag(z) 0.
The eigenvalues are not degenerate and the wave func-
tions can be easily found from the residuum of the corre-
sponding resolvent pole. This calculation leads to

f„(x,y)

4a + sin(nax)sin(my)sin(naxp)sin(myp)

m )n I na+m —E„

where E„ is the solution of (g).
Our main aim is to prove that the level-spacing distri-

bution P(s) of H, obeys the predictions of the GOE, i.e.,

that

P(s) = ks (10)

for small s and all aAO. (k is a positive constant de-
pending on a.) For the sake of simplicity we will sketch
here the proof only for a=~ and postpone the details
for a subsequent publication. [It is worth noting that the
spacing distribution also depends on the number-theo-
retical nature of the scatterer position (xp, yp). ]

In the case a =~ the spectrum of H, is determined by
the zeros of the function g(z) while the spectrum of the
"free" billiard Hamiltonian H is given by the poles of g.
We know, however, that the spectrum of H (which is
given by eigenvalues a n +m, n, m =1,2, . . .) possesses
a spacing distribution which is fairly close to Poisson. '

Thus the question about the level statistics for H can be
reformulated as follows: 8'hat is the spacing statistics
for zeros of a meromorphic function of the form (6), the
poles of which are determined by a Poisson process'?
The answer is readily obtained: A cluster of roots can
occur only if there is a corresponding cluster of poles.
Let us suppose that we have a cluster which contains two
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FIG. 1. The level-spacing distribution of the Hamiltonian
0, calculated for a 1 is compared with the predictions of the
GOE (Wigner distribution). The scatterer has been placed in

the center of the billiard and only the states with even parity
have been taken into account.
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poles; i.e., we find exactly two poles within an interval of
length s with s 0. (The probability of finding such a
cluster tends to 1 for s 0 since the poles are Poisson
distributed. ) It is clear that in this case there will be ex-
actly one zero of g localized within this interval. On the
other hand, a cluster of zeros appears inevitably as soon
as three or more poles cluster together (n —

1 zeros
within each cluster of n poles). The probability that this
happens is, however, determined by the convolution of
the Poisson distribution. The leading term comes from
the three pole clusters and leads directly to (10). As a
result we find a Wigner-like level repulsion in a situation
where the Poisson behavior is to be expected (the classi-
cal system corresponding to H, is not chaotic) The.
spacing distribution calculated for a =1 is plotted in Fig.
1 and compared with the GOE predictions.

Is this a surprising result? It has been argued that
the relationship between the quantum level statistics and
the classical motion takes place only in the semiclassical
regime. The semiclassical regime sets in, however, only
with the typical wavelength being much shorter than all
the relevant scales of the problem. In our case this hap-
pens only for F. ~ since the relevant scale is deter-
mined by the point scatterer. The quantum mechanics
remains in such a way out of the semiclassical regime for
all energies and the standard relationship between the
level statistics and classical dynamics breaks down.
However, one has to be careful with the semiclassical ar-
guments since the limits R 0 and h 0 do not com-
mute.

The analogy of our model with the typical chaotic bil-

FIG. 2. The topography of the positive part of the eigen-
function corresponding to the 411 eigenvalue of 0, with
a 100. The point scatterer is placed at the point (0.55m/a,
0.65m).

liard goes, however, beyond the spectral statistics. Also,
the corresponding wave functions display typical chaotic
structures's'6 and become messy irregular-looking ob-
jects (see Fig. 2).

The description of the wave function in a chaotic
quantum billiard is based on the concept of the eikonal
theory, according to which the wave function y can be
written as a sum over eikonal wavelets which propagate
along the classical trajectory. In a chaotic billiard the
trajectory is chaotic and y is assumed to be of the form

y(x,y) = +exp/i JE [sin(to/)x+cos(toj)y+pj j1,
j

p(y) = e
(2tr) '/'o. (12)

with o =1/JS, where S is the area of the billiard.
It is simple to check whether this assumption also

works for our model. Using the formula (9) we evalu-
ated the wave function corresponding to the 411th state

where to,. and p~ are independent random variables. It
follows from this assumption that the wave function y of
the quantized classically chaotic billiard is a Gaussian
random variable. The probability of finding a value of y
at any point is thus given by'
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FIG. 3. (a) The probability distribution of the values of the eigenfunction tv compared with the predictions obtained for a Gauss-
ian random variable. (b) The probability distribution for a function y obtained as a random superposition of 500 plane waves propa-
gating in random directions with random phases compared with the normal distribution (12).

of H, ~ith a=100 at 10000 points and constructed the
probability distribution as a normalized histogram with
150 bins. [The position of the scatterer is (xo,yn)
=(0.55m/a, 0.65m). ] The result is plotted in Fig. 3(a)
and compared with the expected distribution (12) with

o =Ja/n. A similar calculation has also been done for
the random wavelet superposition (11) with 500 terms
and the result is plotted in Fig. 3(b).

In conclusion, it appears that one can find a fully
developed wave chaos also in systems which are classical-
ly not chaotic. Such systems are expected to contain
parts (sharp edges, scattering points, etc. ) which do not
influence the classical dynamics (they are of measure
zero) but which nevertheless lead to strong wave scatter-
ing.

I am indebted to Professor S. Albeverio, Professor M.
Berry, and Professor J. Bellissard for stimulating discus-
sions and correspondence. The author is an Alexander
von Humboldt Fellow.
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