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It is shown on the basis of numerical data that the normalized localization length of eigenvectors of
band random matrices follows a scaling law. The scaling parameter is b?/N, where b measures the

bandwidth and N is the size of the matrix.
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In a previous investigation ' on the statistical proper-
ties of quantum ‘“‘chaotic” systems, it was found that in
the particular model of the kicked rotator on the torus,
localization effects display a scaling behavior. This scal-
ing is connected with the quantum suppression of classi-
cal dynamical chaos®* and has a counterpart in the scal-
ing theory of localization for one-dimensional disordered
systems of finite size.’

The one-period evolution of the kicked rotator, in the
angular momentum representation, is given by a unitary
NXxN matrix. The matrix elements are appreciably
different from zero only inside a band of size 2k, where k
is the strength of the perturbation. Outside the band
they decay exponentially. In the case of classical strong
chaos, the matrix elements can be considered as pseu-
dorandom numbers, and when k is large enough, the uni-
tary matrix exhibits the statistical properties of the
circular-orthogonal ensemble.® The scaling parameter
which describes the statistical properties in the regime of
full classical chaos is the ratio k2/N. The quantity k2 is
proportional to &£., the localization length measured
through the rate of exponential decay of the eigenvectors
in the limit of infinite size (V — o).

The natural question then arises whether scaling be-
havior is a general property of random matrices with a
band structure. This is an interesting mathematical
problem, which is also relevant for physics. Indeed, band
random matrices may be regarded as models for quan-
tum systems whose states are only partially coupled to

each other by the interaction. For example, this feature
is common to many models of solid-state physics’ and
may be relevant for several problems in atomic and nu-
clear physics.®

In this paper, we consider ensembles of real symmetric
band random matrices (BRM). The statistical proper-
ties of such matrices are poorly understood, except in the
limiting cases of Gaussian-orthogonal-ensemble (GOE)
(Refs. 9-11) and tridiagonal matrices. In the latter
case, the eigenvectors display an exponential localization
in the large-N limit: y, =exp(— |n—no|/&) (Ref. 7),
where £ is the inverse of the Lyapounov exponent, com-
puted, for example, by means of Thouless’s formula'? or
by the transfer-matrix method.'> The investigation of
the intermediate situation, with particular reference to
the localization properties of eigenvectors, is the object
of this paper. Unlike the random-matrix theory, for
which many analytical treatments are available, the lack
of rotational invariance of BRM ensembles makes the
use of computer simulation unavoidable at this stage.

Before presenting our results, we would like to men-
tion that a particular class of band matrices (“bordered
matrices”) has been considered by Wigner.'* They are
characterized by integer diagonal entries ..., —2,—1,
0,1,... and a band of size b of matrix elements a;;
= =+ h, where h is constant and the sign is random; out-
side the band a;; =0. The model is analytically solvable
in the tridiagonal case, and exhibits a semicircle distribu-
tion of the eigenvalues in the limit 4 and A>1, with
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h?/b finite. Bandlike random matrices have also been
considered in Refs. 15 and 16.

The BRM ensemble is defined as the set of real sym-
metric N XN matrices with elements a;; =0 for |i—|
= b. Therefore, b is the number of nonzero elements in
the first row and equals 1 for diagonal, 2 for tridiagonal,
and N for GOE matrices. The matrices being sym-
metric, the number of independent matrix variables is
given by F=b(2N—b+1)/2. They are chosen as in-
dependent Gaussian random numbers with mean equal
to zero and variances such that, up to a normalization
constant, the probability density for one matrix A4 in the
ensemble is

P(A4) =e ”‘"T’A2=1I—V1e_w"‘%ne_2wa'3. (1)
i=1 i<j
From expression (1) one easily computes the ensemble
(Tr4%) =F/2w.

The ensemble is fully characterized by the parameters
N, b, and w. The last one sets the scale of eigenvalues
and plays no role in the statistics of spacings nor in the
values of the eigenvectors (a change in @ amounts to a
multiplication of the matrix by a constant factor, which
does not affect the eigenvectors). We take advantage of
this fact to scale the eigenvalue in such a way that
(Tr4%)=N.

As an interesting preliminary result of our investiga-
tions, we have found that the eigenvalues are distributed
according to an approximate semicircle law with radius
2, as would be for the GOE in the large-/V limit. The
outcome of a semicircle distribution is not obvious, al-
though seems to be a general feature of random ma-
trices.!’

In the following we provide the numerical evidence for
the existence of a scaling property for the localization of
eigenvectors. The basic scaling variable is

x=b%/N (©))

in analogy to the kicked-rotator model (b= k). In Figs.
1(a) and 1(b) we show two typical examples of the
structure of chaotic states of band random matrices in
the two extreme cases x <1 and x> 1. They look com-
pletely different: The former eigenvector [Fig. 1(a)l
shows an exponential decay, while the latter [Fig. 1(b)]
apparently fills in a random way the whole available
length; a consistent definition of localization for both
cases is not straightforward.

In order to introduce a measure for the localization of
chaotic eigenvectors we follow the same approach de-
scribed in Refs. 1 and 18. For each normalized eigen-
vector (uy,...,u,) we introduce the information entro-

py
N N
HGy, ... ,uy)=—2 uflnu?, X u?=1. 3)

i=1 i=1

The quantity exp(H) is proportional to the effective
number of nonzero components of the eigenvector and
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FIG. 1. Squared components u? vs n for typical BRM eigen-
vectors, with N =400. (a) b=4, a typical exponentially local-
ized state (logarithmic scale). (b) =50, a typical delocalized
chaotic state (ordinary scale).

|
0.00 “‘-‘I

therefore gives a measure of localization. It has been
used, for example, in the investigation of solid-state mod-
els,'” and of the quantum dynamics of classically chaotic
systems.?®%! In the present paper, following Ref. 18, we
introduce a normalizing factor in order to obtain a
definite quantity with values between 0 and NV, N being
the size of the matrix. This factor is crucial for the pur-
pose of our paper since it takes into account the chaotic
structure of the states. To this end, let us consider the
limit case of the GOE, with completely delocalized and
chaotic states. It is well known that GOE states, as a
consequence of the O(N) invariance of the ensemble,
have a uniform distribution over the surface of the N-
sphere of radius 1, with a probability density for each
component given by (Ref. 11)

r'(N/2)

(l_ 2 (N—3)/Z'
T(v/2— Dy ) @

w(uk)=
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FIG. 2. The scaled localization length 8 vs x=b?%/N for
N=200 (@), N=400 (»), N=600 (0), N=800 (m), and
N=1000 (0). Numerical data show a remarkable scaling be-
havior with the scaling parameter x. The dashed curve is given
by expression (9) and fits quite satisfactorily the numerical
data.

In the large N-limit the distribution becomes Gaussian, a
signature of the random nature of the eigenvectors:

12
wlug)— {%] exp[—%uf] )

The entropy (3) of a GOE eigenvector, taking into ac-
count that all components are equally distributed, has
the average value

HGOE=—f_l]W(u)u21nu2du
=y(zN+1)—y(3), (5)

where y(z) is the digamma function.
We then define the “entropy localization length” of
eigenvectors of BRM as

ly=Nexp(H— Hgog) . (6)

This definition of localization length is in close agree-
ment with the more intuitive notion of localization as the
shortest sequence of components carrying most of the
vector’s normalization.'® The entropy localization length
(6) has large fluctuations from one eigenvector to the
other in the same matrix, although it clearly shows an
average dependence on the eigenvalues. Moreover, for
large matrices, its average over all the eigenvectors is
very stable [for the GOE it may be shown that the fluc-
tuations of the entropy around the average value (5) are
of the order InV/N]. This property justifies the numeri-
cal computation of ensemble averages over a limited
number of matrices (in our computations, twenty for
N =200, ten for N =400, three or more for N > 600).
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FIG. 3. A log-log plot of the data of Fig. 2 in the variables
x=b?%N, y=p/(1 —B). Here, additional numerical data are.
given for x > 8. Together with a satisfactory scaling behavior
for the whole range of x there is a remarkable linear depen-
dence up to x=10. The dashed line corresponds to y =1yx,
with y=1.4.

We now introduce the average localization length
d=N exp((H) _HGOE) , (7)

where the averaging is performed over all eigenvectors of
one matrix, and over a number of different matrices of
the ensemble.

The main quantity that undergoes scaling is =d/N,
the “‘scaled localization length,” which takes values be-
tween 1 for the GOE and 0 for diagonal matrices in the
large-NV limit.

The main results of our numerical computations are
shown in Figs. 2-4. In Fig. 2 we plot the numerically
obtained values of B as a function of x =b?/N, for N
ranging between 200 and 1000. It is seen that, with a
good accuracy, all points fall on a smooth curve. Even
tridiagonal matrices roughly follow the scaling curve
(see Fig. 3).

It is illuminating to plot our numerical data in the new
variables Inx and Iny, with

y=p/(1—p). ®8)

In these new variables there is a remarkable linear be-
havior, In(y) =alIn(x) +¢, that holds up to x == 10. A fit
of the numerical data gives a=1 and ¢=0.35. As an
analytical expression for the scaling curve in the above
region, we may therefore take

B=yx/(1+yx), y=14. 9)

This curve is plotted also in Fig. 2 and gives an excellent
description of the numerical data. It is important to re-
mark that for x <1 we get from (9), 8= 1.4x, which ex-
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FIG. 4. Magnification of Fig. 3 for Inx=2. A few typical
error bars are also shown.

actly follows from the theory of the kicked rotator once
one identifies x with k 2/N.!

The numerical exploration of the scaling curve at
values x> 1 becomes increasingly difficult due to small
denominators in (8), and requires larger and larger ma-
trices. Moreover, when b approaches N/2 the band
structure is lost and the computed localization lengths
deviate from the scaling line. However, it is seen (Figs.
3 and 4) that for x>>1 (x > 10) numerical data deviate
from the straight line, but nevertheless clearly indicate
that the scaling behavior continues to hold. We present-
ly do not know the analytical form of this asymptotic
dependence. We also do not see any clear connection of
the observed behavior with similar problems already dis-
cussed in solid-state physics.2*~24

In this paper we have provided a convincing numerical
evidence for the existence of a scaling behavior of the lo-
calization of eigenvectors of band random matrices. The
scaling variable is b 2/N, where b measures the size of the
band. We want to stress that this scaling property is
highly nontrivial and yet there is no explanation in the
frame of matrix theory. We were led to conjecture this
property not on the basis of mathematical considerations,
but from the analogy with a physical model, the quan-
tum kicked rotator. In addition, according to our pre-
liminary computations,?® a scaling behavior with the
same scaling parameter holds also for the statistical
properties of spectra, namely, the level- spacing distribu-
tion P(s).

As a conclusive remark, we would like to note that the
two distinct regimes in the scaling behavior of 8 as a
function of x (Fig. 3) may have a counterpart in the so-
called insulator and conductor regimes of disordered
models. It is intriguing that, formally, the variable (8) is
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analogous to the electrical resistance, with 8 playing the
role of the transmission coefficient.
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