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Dynamical Regimes of Directional Viscous Fingering: Spatiotemporal Chaos and Wave Propagation
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In the opening gap between two moving surfaces, the interface between air and a viscous fluid can
form a linear pattern of regular cells analogous to those of directional solidification. Depending on the
values of the surface velocities, this pattern destabilizes in different ways. One regime presents the main

characteristics of spatiotemporal intermittency of the type observed in the Kuramoto-Sivashinsky model.
In the other, the cells become a propagative structure. Near one of the thresholds they show up as soli-

tary waves; above, they form traveling domains of increasing size.

PACS numbers: 47.20.Hw, 47.20.Ky, 47.25.Ae, 68.10.La

The nonlinear spatiotemporal behavior of extended

systems is generally complex because of the large num-

ber of degrees of freedom involved. Recent theoretical
effort in this field has concentrated on ideal situations in

which a one-dimensional system has an underlying basic

periodic cellular state. Situations of this type can be de-

scribed in the formalism of either amplitude or phase
equations reviewed in Refs. 1 and 2. Two points have

been particularly investigated: the transition of such sys-

tems to chaos and the possibility of obtaining propaga-
tive structures. The first aspect was initially investigated

numerically on a model phase equation introduced by
Kuramoto and Sivashinsky (KS) [and on its variant the
Kolmogorov-Spiegel-Sivashinsky equation (KSS)]. It
led to the characterization of a specific behavior: the spa-

tiotemporal intermittency. Among the experiments on

chaos in extended systems, it is only in the cases
where the system is confined in one direction that this

behavior is observed. A second possible dynamics in ex-

tended systems, the existence of propagative modes, was

first observed experimentally in electroconvection and in

binary-fluid-mixture convection, and was at the origin
of important theoretical efforts. '

We present an experiment in which the unstable one-

dimensional medium is a linear front affected by what

we will call directional tiscous ftngering The simil.arity
between crystal growth and viscous fingering led us to
seek an experimental equivalent to directional solid-

ification ' in viscous fingering. This meant that the
Saffman- Taylor unstable front between two fluids of
different viscosities had to be submitted to a stabilizing
gradient localized in the laboratory frame of reference.
This is in fact realized in several classical experiments on

the interface between a viscous and a nonviscous fluid in

the widening gap between a roller and a plane, '' between
two rollers, ' in the narrow passages of journal bear-

ings, ' and in the peeling of an adhesive tape. ' In a

previous work' we showed that the unstable front does
have a dynamical behavior comparable to that of direc-
tional solidification and that its ruling equations are
similar. We will show here that, if the two solid surfaces
have independent velocities, a rich phenomenology of

nonlinear phenomena is obtained. Thus the same experi-
ment lends itself to the study of several dynamical be-
haviors of one-dimensional extended systems.

The cell was formed by a hollow horizontal Plexiglas
cylinder of inner radius R2 =71 mm and length L2 =210
mm and a smaller cylinder of radius R 1

=49 mm

(L ~
=200 mm) off-centered inside it. The two axes were

parallel to each other and placed so that only a very nar-
row gap separated the cylinders along one of their gen-
eratrix at the bottom of the apparatus. Two micrometers
allowed the possibility of adjusting the minimum width
of this gap bo (100 pm & bo & 1 mm) with a resolution
of 15 pm. The geometrical aspect ratio I =L~/bo ranged
between 200 and 2000 and gave patterns with up to 200
cells. The two cylinders were driven in rotation indepen-
dently by two locked-in motors. The tangential velocities
Vl and V2 of the inner and outer cylinders were defined
with a resolution of 1 mm/s. A small amount of oil was

introduced between the cylinders. This quantity was not
a critical parameter as long as it was chosen small

enough to avoid a gravity eA'ect and large enough to fill

the minimum gap bo. We used a silicon oil, Rhodorsyl
47V100, with dynamical viscosity p =96.5 && 10 kg/m s

and surface tension T=20.9X10 N/m at 25'C. This
oil insured a good wetting of the Plexiglas surfaces. We
observed the interfaces from below, through the external
roller. The front shape was recorded on videotape. In
order to visualize the spatiotemporal evolution of the
front we could select one single video sweep line inter-

secting the cells and record its evolution as a function of
time. A new video image was generated with 512 such
lines separated by a tunable time delay.

The instability is due to the two surfaces moving away
from each other: For each sign of Vl+ V2 one of the
menisci is stable and the other can be unstable. We limit
ourselves to the study of one meniscus (V~+ Vq & 0).
Roughly by increasing V~+ V2 a threshold is met where
the linear front destabilizes. On the entire stability limit
drawn in Fig. 1 this is a supercritical process in which
the front becomes a sinusoid of wavelength A, Using
the lubrication approximation, we previously analyzed '

the basic phenomena in the particular case where only
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FIG. 1. Stability diagram of one meniscus in the plane
(V], V2) in a cell of minimum thickness bo 0.37 mm. %'e ob-
serve stationary periodic cells (SC on the two axes), spatiotem-
poral chaos (STC), traveling cells (TC), and solitary waves
(SW) moving on a stationary sinusoidal front (hatched re-
gion).

one cylinder is rotating and gave reasonable predictions
for the values of V, and A, However, this treatment
suggested that the state of the front would practically
depend on Vi+ V2 only. This is not what is observed ex-
perimentally. The onset values and the nonlinear behav-
ior show that Vi and V2 form two independent control
parameters. We will therefore describe (Fig. 1) the
difl'erent regions of instability in the plane (V~, V2). The
threshold for counterrotating cylinders is fitted by
V!+Vq V, (V, =47 mm/s for ho=0. 37 mm), but for
corotating cylinders (V! and V2&0) the front remains
stable up to larger values of the mean rotation (Fig. I).
The further nonlinear evolution for larger values of Vi
and V2 is different in different regions of the diagram.
We can first remark that the same states of this front are
obtained at points symmetrical with respect to the first
bisector (V!= V2). This shows that there is no influence
of centrifugal forces (the Taylor number is very small),
nor of the curvature of the cell. The simplest evolution,
described in Ref. 15, is observed when only one cylinder
is rotating, say the inner cylinder. With an increase of
the velocity the amplitude of the instability grows larger
and the front departs from its sinusoidal shape. It forms
a series of parallel fingers separated by thin oil walls'
[Fig. 2(a)] very similar to directional solidification cells.
The wavelength A, of the pattern decreases rapidly as the
velocity increases and then tends to saturate. At all the
velocities that we investigated (up to 50 times the initial
threshold) the pattern reaches a stable, regular state and
no chaos is observed. For all velocity changes, the pat-
tern adapts easily to take an optimum wavelength;' new

cells are created by tip splitting or cells disappear when

pinched off. Provided the structure has time to evolve,

FIG. 2. In a cell with bo 0.37 mm, photographs of a part
of the front in the cases of (a) a stable pattern of stationary
cells; (b) a pattern with weak spatiotemporal chaos showing a
coherent structure (CS) and cells oscillating in time (Osc); (c)
a pattern with strong spatiotemporal chaos; (d) a pattern of
traveling waves, showing a source and a sink; and (e) solitary
waves (SW) propagating on a stationary sinusoid.

there is no hysteresis. Specific transients are observed
for small jumps of the velocity. The reorganization of
the structure of initial wavelength k occurs by a
compression wave propagating along the front; one of the
cells (usually near a boundary) adapts to the new shorter
wavelength A, ', while its neighbor is first dilated, then
shifts, and then stops and shrinks to A. '. The process re-

peats itself so that, transitorily, the front is formed of a
domain of shifting cells separating a region of wave-

length X' from a region of wavelength X. The shifting
cells and the boundaries of their domain propagate in op-
posite directions. These waves appear to be identical to
those observed in liquid-crystal directional phase
transition' (' and in eutect&c growth after a jump inis(b)

the velocities.
When at point A (Fig. 1) a regular pattern has been

created; two interesting dynamics are observed if the
outer cylinder is now set in motion in one direction or the
other.

(i) If the outer cylinder is set into corotation (V2 & 0),
defects appear in the linear array [Fig. 2(b)]: Constant-

ly some cells split and others are pinched off. There ap-
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pears to be no finite measurable threshold to this eNect,
which is observed even for very small Vz. As V2 is in-

creased the disorder increases and ultimately the front is

chaotic nearly everywhere [Fig. 2(c)]. The whole area
labeled STC in Fig. 1 exhibits a spatiotemporal chaos.
Along the front there is coexistence of chaotic domains
(with strong fluctuations of the wavelength and constant
formation and destruction of cells) with quiescent doma-
nins of steady, spatially periodic, cells. The diA'erence

between the two types of domains and their time evolu-

tion are very obvious after image processing (Fig. 3).
The domains are not stable: They appear, extended, and
then shrink and vanish, but for each value of the control
parameter there is a mean fraction of the front occupied
by chaotic domains. The system is thus chaotic with a
spatiotemporal intermittency of the type observed in the
KS and KSS models and in other types of experiments.
A complete comparison of the experiment with the mod-
els would require both our showing that the elementary
processes at work are the same and a statistical study of
the domain sizes. An investigation of the latter is in pro-
gress and will be reported elsewhere. As our system
oA'ers the possibility, for weak chaos, of following in de-
tail the individual defects and their relations, we will

concentrate here on the former characterization. Experi-
mentally when a cell is pinched oA', it either creates other
defects nearby, or else emits a phase wave which propa-
gates along the front. This wave generates in the quies-
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FIG. 3. Spatiotemporal evolution of a part of a front show-

ing weak chaos (each horizontal line is a section of the front so
that the dark lines show the positions of the oil films separating
the cells) showing the stability of anomalous cells (CS), the
coexistence of ordered and disordered regions, and a defect
generating oscillations of the cells which propagate (dashed
lines). The time elapsed from the top to the bottom is 20 s.

cent regions cell oscillations as shown in Fig. 2(b) in

which a given cell swells and shrinks in opposite phase
with its neighbors (optical mode). If the phase wave
traveling along the front reaches an already slightly dis-
turbed region, a chaotic burst appears in which cells are
pinched oA. So, chaotic domains are related through
space and time by the waves. This process is that ob-
served in simulations of the KS and KSS models.
Another characteristic of the weak chaos of our fronts is
the existence of coherent structures (CS) similar to those
observed by Chate and Maneville in the simulation of
KSS equations. They are formed of two asymmetrical
cells [Figs. 2(b) and 3] which occupy the width of three
normal cells. These cells are transient in the strongly
chaotic state but long lived near the threshold.

(ii) If, from A (Fig. I), the outer cylinder is now set in

counterrotation (V2 (0), the eA'ect is also immediate.
The cells become inclined relative to the front and begin
to propagate [Fig. 2(d)]. Again we could not find a
finite lower limit to the threshold. The velocity of
translation of the cells is proportional to (Vq) ' . If Vq is
set abruptly, several domains of left- and right-traveling
waves are formed, separated by sources and sinks. As
time passes, annihilations of sources and sinks occur, in-

creasing the size of the domains. Traveling cells are ob-
served in all the regions labeled TC in Fig. 1. They are
associated with a slow large-scale flow along the front; if
one single source is present at the center, the fluid moves
very slowly towards the extremity of the cylinders and
accumulates there. Traveling cells have been observed in

directional solidification but they are usually ascribed to
the eA'ect of the crystal anisotropy. ' In isotropic media,
traveling waves are observed in convection in binary-fluid
mixtures, electroconvection of liquid crystals, Taylor-
Dean flow in partially filled cylinders, ' and Taylor-
Couette flows between counterrotating cylinders. A
theoretical model' with coupled amplitude and phase
equations exhibits a transition between motionless cells
and traveling waves when parity is broken. As observed
in the experiment, the wave velocity is then proportional
to the square root of the distance to threshold.

We now want to characterize the lower limit of ex-
istence of TC. Moving away from point 8 of Fig. 1 by
increasing V] and V2, we first cross the onset of the in-

stability where a motionless sinusoidal front is formed.
Then over a second, subcritical, threshold we begin to see
recurrently the passage of a solitary wave (SW) moving
in either direction along the front. These SW have a
large, well determined, amplitude and a characteristic S
shape [Fig. 2(e)]. They usually form during the splitting
of a steady cell. Once formed, they travel, destroying lo-
cally the motionless sinusoid, which reappears behind.
When two SW moving in opposite directions meet, they
can cross each other, but more often one of them is des-
troyed. The spacing of these solitary waves decreases
away from the onset and they can be generated by pack-
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ets of several waves following each other. As they be-

come tightly packed, the front becomes entirely formed
of traveling cells separated by sources and sinks [Fig.
2(d)]. Altogether there is in Fig. I a wedge-shaped re-

gion in which solitary waves coexist with a stationary
s&nuso&d.

In conclusion, directional viscous fingering is an insta-

bility with a rich potential for the study of one-

dimensional dynamics in extended systems. As it has

two control parameters several diA'erent dynamical be-

haviors can be reached in the same experiment. We ob-
served stable patterns and the waves that provide adapta-
tion to an optimum wavelength, chaotic regimes with

spatiotemporal intermittency, and traveling cells. The
transition to this latter state is either supercritical (start-
ing from A) or subcritical (starting from 8). In the

latter case it occurs through the spontaneous repeated
formation of solitary waves, moving on the steady pat-
tern.
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