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"Luttinger-Liquid" Behavior of the Normal Metallic State of the 2D Hubbard Model
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Analysis of interacting fermion systems shows that there are two fundamentally diA'erent fixed points,

Fermi-liquid theory and "Luttinger-liquid theory" (Haldane), a state in which charge and spin acquire

distinct spectra and correlations have unusual exponents. The Luttinger liquids include most interacting
one-dimensional systems, and some higher- (especially two) dimensional systems in which the band spec-

trum is bounded above: systems with Mott-Hubbard gaps and an upper Hubbard band. We give a

theory which is useful in calculating normal-state, and some superconducting, properties of high-T, su-

pe rconductors.

PACS numbers: 71.25.—s, 71.30.+h

Haldane' has characterized the behavior of a large
variety of one-dimensional quantum fluids by the term
"Luttinger liquid,

"
showing that they can all be solved

by common techniques based on transforming to phase
and phase-shift variables for the Fermi-surface excita-
tions (a procedure often called "bosonization" even

though some of the Luttinger liquids start out as Bose
systems). These systems are characterized by fractiona-
tion of quantum numbers —e.g. , in the Heisenberg spin
chain the excitations are spin- 2 fermionlike, while in the
Hubbard model they are spin--, ' chargeless spinons and
+ e spinless holons with fermionlike properties —and,
often, a Fermi surface with nonclassical exponents, and

unusual exponents for correlation functions, but the
correct "Luttinger" volume.

I will here restrict the term, for my purposes, to sys-
tems based on fermions —preferably ordinary electrons—and argue that the Luttinger liquid is a fixed point, or
a manifold of fixed points, of the same renormalization

group which, "usually, " leads to the Landau-Fermi
liquid as a unique fixed point. (The interaction parame-
ters of Landau-Fermi-liquid theory are well known to
be marginal operators around a single fixed point, the
efl'ectively free Fermi liquid. )

Some years before, Luther3 showed that the bosoniza-
tion techniques used to solve these one-dimensional mod-

els are equally applicable to d-dimensional Fermi gases,
and he claimed that they describe certain facts slightly
more accurately than Fermi-liquid theory —the existence
of 2kF singularities in correlation functions, for instance,
for the free-particle systems. But Luther did not consid-
er the possibility that the interacting d-dimensional prob-
lem could lead to new physics.

The first new point I want to make is that two of the
reasons usually given for the unique nature of one-
dimensional Fermi systems are untenable. The first is

that in 1D one has only forward scattering, or backward
scattering where the momentum of one particle is main-
tained, if not its spin. This is indeed the correct reason
for viability of the Bethe Ansatz. But after renormaliza-
tion the Landau theory has only forward or exchange

scattering, and the renormalized particles indeed obey a
Bethe Ansatz of the simplest form. This is the essence of
Luther's argument, that the excitations can be bosonized
in each direction around the Fermi surface.

Second, it is argued that particles cannot be inter-
changed in 1D without encountering phase-changing in-

teractions, and hence statistics are meaningless in 1D:
but none of Haldane's arguments seem to fail in the
slightest if we introduce weak long-range hopping in-

tegrals in any of the examples, and such hopping in-

tegrals can allow a Berry process. No one argues, in

fact, that real electrons living in 3D space in the pres-
ence of a chain of ions, which know perfectly well that
they are fermions, will not obey the models and show the
fractionization effects.

The unique eA'ect in 1D is one which is also present in

a class of higher-d models, specifically 2D repulsive
Hubbard models, and in some strong-coupling higher-d
cases. This is the presence of an unrenormalizable
Fermi surface pha-se shift. Such a phase shift signals
that the addition of a particle changes the Hilbert space
for the entire system of particles —it requires a net
motion of field amplitude through the distant boundary
of the system, or a net change of wavelengths. The
effects of such phase shifts were explored thoroughly in

connection with the "x-ray edge problem" and are sum-

marized in the "infrared catastrophe" theorem:

(VAC(V)
~
VAC(0)) a:exp[ ——, (gtr) lnN], (1)

where
~
VAC(V)) is the noninteracting Fermi sea in the

presence of a potential V which causes a phase shift b.
The singularity is the result of the shifting of the entire
spectrum of k values (in the presence of fixed boundary
conditions) or of the displacement of wave-function
nodes (for scattering boundary conditions), and is in-

dependent of the finite contribution which may ensue
from local modifications of the wave functions.

In the conventional higher-d, free-electron-gas cases to
which Landau-liquid theory applies, it is implicitly
assumed —and indeed self-consistently so—that the
phase shifts caused by adding or removing a single parti-
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(3)

[where in a Fermi system, the (N+1)-particle system
necessarily has one particle added near the Fermi sur-

face, and hence its ground state is quasidegeneratej.
Equation (3) cannot be true if there is a phase shift due
to the addition of ci, .

In one dimension, for interacting particles, such a
phase shift is unavoidable, since the effective range of in-

teractions is necessarily (for real interactions) of the or-
der of the wavelength (b =kFa). Thus in all the realistic
one-dimensional systems, Z=O, the Fermi-liquid fixed
point is excluded, and the phase shifts due to interactions
must be taken into account as relevant variables —in

fact, in many cases renormalization invariants. Z=—0 im-

plies that the Fermi-sea excitations —which may still
exist —do not carry charge (but may carry spin and be
spinons). I will summarize Haldane's analysis of the
spectrum of the 1D Hubbard model shortly.

In 20, the scattering length for free particles and
repulsive interactions diverges only as 1/kink as k 0,
and for higher dimensions it is —1/n-k~ '~, in both
cases no serious problems need ensue for shorter wave-

lengths. But there is one type of problem where finite
phase shifts are inevitable, namely, systems with a
single-particle spectrum bounded above and below in en-

ergy. In this case the introduction of an extra particle
may cause a bound state to split ofl' from the top of the
spectrum (an "antibound state"). By Levinson's

theorem, " the presence of a bound state, either above or
below the band, is signaled by a difl'erence m in phase
shift in the appropriate channel between top and bottom
of the band. This corresponds to the fact that one state
must be removed from the band to make up the bound
state, and to Friedel's identity

~n(k) =g(2I+1)BI(k) (4)

for the change in number of states to be found below a
wave vector k due to a phase shift 8(k). Continuity —or
the fact that any bound state must be a superposition of
all states in the band —tells us that some 6' must remain
finite at all energies in the band.

For any dimension, a repulsive interaction U
su%ciently strong to split ofI an upper Hubbard band

cle can be made to vanish in favor of a renormalization
of all the quasiparticle mean-field energies. It is as-
sumed that there is an effective mean-field energy whose
eigenstates are the precise k states of the appropriate
free-particle system. The forrnal result of this process is

that the wave-function renormalization constant Z is

finite: That is, the overlap integral

Z =(ci, +g(N)
~
+I,~(N+ 1)) & 0, (2)

where +I, is the exact wave function of the (N+1)-
particle state with one quasiparticle added, and in, par-
ticular,

(ci,, 0(;(N) i +p(N+ 1)) & 0

adds one state to that band for each added electron; the
"upper Hubbard band" can be thought of as equivalent
to the manifold of antibound states and where it is

present we must have Z—=0 in the occupied lower Hub-
bard band, since the Hilbert space changes when we add
a carrier. In the 2D Hubbard model (with one band, the
generalized Hubbard models recently introduced are an

irrelevancy) any repulsive potential whatever will split
ofl' bound states above the band, because of the well-

known fact that in two dimensions all potentials bind.
Thus, although for very low occupancies or very weak in-

teractions the relevant singularities come in with small
coefficients which are nonanalytic in interaction
(-e ' ") or density (e " ""),Z=O in all cases. These
terms will not be picked up in series expansions.

We can identify the relevant interactions by thinking
of the upper Hubbard band as a kind of "ghost" conden-
sate in a channel of 2k total momentum and zero total
spin reflecting the fact that each particle of down spin
prevents some state of the same momentum and up spin
from being occupied, so that the "condensate" represents
both states being occupied.

For each (conserved) total momentum K=k+k', the
final-state energy is a d-dimensional function of relative
momentum g which has some maximum value, above
which the antibound state for momentum K appears for
all U in two dimensions. Every scattering state in the K
channel must be orthogonal to this state, which defines
the eigenvalue of the 5 matrix which has finite phase
shift. When we restrict ourselves to excitations near the
Fermi surface by renormalizing away everything but a
shell of states, there still must be a finite forward-
scattering phase shift in the K=2kF channel at each
point in the Fermi surface. This finite phase shift means
that up- and down-spin particles cannot occupy exactly
the same k state. Thus, as in one dimension, one
relevant interaction is forward scattering of up or down

spins.
A second relevant interaction channel may be

identified as the precisely backward scattering of up
versus down spins, which comes from the 2kF bound
state of up-spin holes to down-spin electrons and vice
versa; that is, the channel containing a +k t electron and
a —k J hole. Viewed from the other hole-particle chan-
nel, this is a backward scattering.

It is worth discussing the resulting state in terms of a
"renormalized Bethe Ansatz" picture. If we, following
Benfatto and Gallivotti, use a "poor man's renormali-
zation-group" procedure to eliminate k states far from
the Fermi surface, we will end up with a shell of low-

energy excitations with momenta near the Fermi surface.
Even if Z=O and even in the presence of our new in-

teractions, for the thin shell of states near kF every real
scattering is nondiAractive because of momentum con-
servation in that the two k-vectors never change: Charge
is always scattered forward. When Z=O, however, the
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original k states of the Fermi liquid are not adequate to
contain all the particles, and the Bethe Ansatz wave

function contains a continuous spectrum of k's through
the Fermi surface, exactly as in one dimension, where
the large-U Hubbard model solution may be written

g( —I ) ~detlle 'll x (spin function),
0

and the spectrum of k, 's extends continuously to i Q i,
Q )kF. We presume that the same form is valid for re-

normalized particles in 2D, near the Fermi surface.
Under bozonization the backward-scattering interac-

tion turns into a term proportional to VOtVO~ in the
Hamiltonian for the phase-shift variables 8, defined by
&8 =2trp . This term in the effective boson Hamiltoni-
an must be transformed away by a Bogoliubov transfor-
mation. But as in one dimension, when transformed
back into fermion variables the new dynamical variables,
even though their equations of motion have linear disper-
sion relations, do not correspond to simple fermion or bo-
son excitations, and have Green's functions with nonclas-
sical exponents. They can be thought of as two spinless
fermions (which is, after all, what we started with) two
semions, or whatever; but all physical response functions
correspond to fermion or boson combinations. Charge
and spin separate, the low-energy spin excitations being
like fermions at the original kF, the charge excitations
centering around the spanning vectors 2kF.

In a previous paper, ' we attempted to derive charge
and spin separation by solving the double-occupancy
problem with a slave-boson technique and a constraint;
the basis of such a theory is undoubtedly correct but the
mean-field treatment of the gauge variable, which results
from the constraint, was not.

The actual correlation functions and Green's functions
in the two-dimensional case have not yet been calculated:
Fortunately, many experimental data can be calculated
by using the photoemission data" to describe a semi-
empirical fit, and by using the one-dimensional Hubbard
model as an appropriate guide to understanding. ' The
actual calculation of physical properties will be described
separately.

At present, all experimental observations seem compa-

tible with this point of view, and many puzzling ones re-
ceive almost unique explanations.
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