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Asymptotic Spin-Spin Correlations of the U = ~ One-Dimensional Hubbard Model
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The large-distance behavior of the spin-spin correlation function of the one-dimensional repulsive
Hubbard model is evaluated analytically in the strong-coupling regime at quarter filling. In this case, its
power-law decay is characterized by an exponent y= —, . We have found that this behavior is generally
valid at any nonzero doping, although our argument is not mathematically rigorous away from quarter
filling. These results strongly suggest that the renormalization-group scaling to the Tomonaga-Luttinger
model is exact in the U ~ Hubbard model.

PACS numbers: 75.10.Jm, 72. 15.Nj

From the exact solution, several properties, like chemical
potential and magnetic susceptibility, have been explicit-
ly calculated both at finite U (Refs. 1 and 2) and in the
strong-coupling regime where also finite-temperature
thermodynamic quantities have been found. ' In spite of
these remarkable successes, however, many crucial open
problems remain, even in 1D. In particular, the long-
distance behavior of the spin-spin correlation function is

known only in two limits: the noninteracting electron
gas and the half-filled system for U ~. In both cases
it has the asymptotic form

(S(0) S(r)) -cos(2kFr)/r', (2)

where y=2 for U=O and y= 1 (with logarithmic correc-
tions) at U ~ and half filling. Away from these
two limits, no exact results are known about spin-spin
correlations in the 1D HM.

In this Letter, we present an exact analytical evalua-
tion of the asymptotic spin-spin correlations of the
U ~ 1D HM away from half filling.

We start from the exact ground-state wave function of
a system of N (even) electrons in a L site chain with

periodic boundary conditions, originally obtained by Lieb
and Wu. ' Ogata and Shiba have shown that, in the
U ~ limit, it simplifies in the following form:

lit(X|, . . . , XN, y ~, . . . , yM)

tltSF(X1 ~ ~ ~ XN )'mt H(y i, . . . , yM ),
where x], . . . , x/v denote the spatial coordinates of the W

electrons, and the y], . . . ,yM "coordinates" label the po-

Much of our present understanding of the physics of
highly correlated electron systems is closely tied up with

the Hubbard model (HM). The one-dimensional HM
has been the subject of particular interest since the well-

known exact solution of Lieb and Wu ' who formally ob-
tained the ground-state wave function and the energy
spectrum of the HM Hamiltonian,

0= —g(c; c;+~ +H.c.)+Urn n

(4)

where PsF (j) is the probability of finding j particles in

(O, r) with one particle at 0 and another at r in the spin-
less Fermi gas:

Pst;(j) =(non„l't(N„—j))sF, (5)

where b(n) is Kronecker's 8 function, N, =gf-ont, and—

sitions of the M N/2 spin-up electrons on a "lattice"
whose sites are x],x2, . . . , x~. In the following M will
be taken as an odd integer. With these notations
PH(yl, . . . ,y~) is the same function appearing in the
Bethe ground-state wave function of a Heisenberg N-site
chain. Moreover, in expression (3) tltsF is the ground-
state wave function of a free spinless Fermi gas with an-
tiperiodic boundary conditions. Equation (3) is derived
from the Bethe Ansatz solution of the Hubbard model by
explicitly taking the limit U ~ in the Lich and Wu
equations. In this case, following the notation of Ref. 1,
the coefficients [Q,P] appearing in the Bethe Ansatz are
determined by the equation [Q,P] = —[Q,P'] which im-
plies complete antisymmetry with respect to the label P.
Moreover, the eigenvalue equations for the two sets of
quantum numbers k, and A, decouple in the U ~ lim-

it, giving

Lk~ =2trII,
M

Ne(2A, ) 2trJ,——g e(A, —Att),
P~1

where the quantum numbers II and J, are half odd in-

tegers and integers, respectively. The first equation
reproduces the spectrum of a spinless fermion gas with
antiperiodic boundary conditions, while the second one is
exactly the consistency condition in the Bethe Ansatz
solution of the Heisenberg chain with periodic boundary
conditions. A careful analysis of the wave function then
leads to Eq. (3).

The spin-spin correlations in this state can be written
as
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the symbol ()sF indicates the quantum average over the

spinless fermion ground state. The Heisenberg spin-spin
correlation function SH(j) appearing in Eq. (4) is known

to have an antiferromagnetic short-range order:

SH(j) =(—1)'f(j),
where f(j ) I [log (j)/j] for large j. A recent
analysis has shown that a= 2. Neglecting the non-

asymptotic contributions to f(j ), it is easy to verify that
the function f(j ) satisfies the following inequality for

any j)j'~ r:

~M(r) = log (r).j j r

Inequality (7) is valid in the r ~ limit, provided that
either the corrections to the asymptotic behavior of f(j )
are "sufficiently smooth,

" or they vanish faster than

log (r)/r . In the following we assume that this is the
case. Our analysis is then exact only to leading order in

The evaluation of the full probability function PsF (j )
is a difficult task even for a free fermion gas, because it
is a highly nonlocal correlation function. In order to
gain some intuition on the behavior of this quantity, it is

convenient to analyze some of its general properties. In
the following we will take the thermodynamic limit

(N ~, L~ 00, p=N/L) at fixed r in order to elimi-

nate finite-size eA'ects. Therefore the inequality 1V))r
will be always understood. PsF(j) is a positive-definite
function normalized to

Z = g PsF(j ) =(non„)sF =P'+O(1/r'),

where p=N/L is the average electron density. The first
two moments of this distribution can be evaluated

analytically yielding, to leading order,

Given a normalized probability distribution PsF(j)
satisfying Eqs (9.J and given f(j) bounded and satisfying
Eq. (7), the quantity pi=+2PsF(j)( —1)'f(j ) differs
from [pJ'-+qPjF (j)( —1)ilf((j)) by terms vanishi ng
faster than log ' +'(r)/r .

In fact, let us consider the diAerence R between the
two considered quantities, and split up the sum in two

pieces R =R i+R2 with

Ri Z PSF(j)( 1)i[f(j) f((j))]
J~2

r+1
PsF(j)( 1)i[f(j) f((j))]

j (J)/2+ 1

From the boundeness of f(j ) [say, I f(j) I
~ A]:

(j&/2

R 2A g PsF(j) . (lo)
J~2

The term appearing on the right-hand side of Eq. (10)
can be easily bounded by means of the variance of j:

(.)2 ~J~t2 a+1

Z PSF(J) —Z PSF(J)(J (J))
4

Hence, from Eqs. (9)-(11) we get Rl (constxlog(r)/
r2. The second term R2 can be bounded using Eq. (7)
and the Schwarz inequality:

R2 ~ ~ 2 I j—&j) I PsF(j)(j)
2 J (j)/2

g (J -(J))'P",F(J)

Finally, using (9) and the previous bound on Rl we get
the desired result.

Such an asymptotic evaluation when applied to Eq.
(4) gives

(j) =Z 'gjPsF(j) =rp+1,
J

(9)

o
l

ic )+]
(S(O) S(r))= -C„l'" "+O '"

pr
(12)

(j ) =Z 'gj PsF(j ) =(j ) +
z

lnr.
J 7t'

The previous asymptotic forms folio~ from the direct
evaluation of three- and four-body correlation functions
on the spinless fermion ground state, and can be easily
verified by use of Wick's theorem. The second equation
is valid to order lnr for every density away from half
filling. These results indicate that the function PsF(j ) is

strongly peaked around j—pr with a spread of the order
hj —(lnr) 't /m. Therefore only a small neighborhood of
the value j=pr gives a significant contribution to the
sum in Eq. (4) for large r. This suggests that the asymp-
totic behavior of Eq. (4) can be obtained even without
the evaluation of the full probability distribution PsF(j ).
It is possible to give a simple formal proof of this state-
ment.

where C, is the k=z component of the Fourier trans-
form of PsF(j) defined by

1+1
C„=g PsF(j)exp(itrj ) =(non, e" ')sF.

J=2

Because of the algebraic properties of the density opera-
tors n„, the function C„can be written as a linear com-

bination of the simpler quantity D(r):

C, = —,
' [D(r —2) —2D(r —1)+D(r)],

with
I

D(r) =(e ')SF.

In order to evaluate this average, we note that the spin-

less fermion ground state is a Slater determinant (SD) of
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—(2/n)sinzp(j —I)/(j I), j&—I,
&, , ( =8(j—I) = '

1 2
.

I (14)
t

The limiting case p =1 is particularly simple because the
matrix 8 becomes diagonal, leading to C, =(—1)"+'.
This result, when substituted into Eq. (12), gives just the
Heisenberg spin-spin correlations, appropriate for the
half-filled system.

In the following we will extend the analysis to the case
p~1. Note that in the matrix 8 all the elements 8~ I de-
pend just on the diff'erence (j—I), i.e., 8 is a Toeplitz
matrix. This class of matrices has been extensively stud-
ied in many problems of statistical mechanics including
the evaluation of the correlation functions of the 2D Is-
ing model. However, the basic theorem leading to the
asymptotic expansion of the determinant of a Toeplitz
matrix cannot be applied directly in our case because
B(n) decays too slowly for large n. The problem
simplifies in the case p= —, where the spinless fermion

state is invariant under charge conjugation. This canoni-
cal transformation changes the fermion creation opera-
tors into annihilation operators with an overall sign
which depends on the sublattice they belong to:
c; ( —1)'c;. Under this symmetry, the operator
exp(inN„) changes according to

exp(inN„) exp[ —iz(N„—r —1)]
= ( —1)" ' exp(inN, ),

yielding D(r) =0 for even r. Now we proceed to the
evaluation of D(r) for odd r =2p —l. As a first step we

note that the matrix 8~ I can be cast into the form

0 F+
F 0

(is)

This is achieved by use of the unitary transformation
which interchanges the rows and columns of the original
matrix 8 collecting the even (odd) indices together. The
matrices F — in Eq. (15) are pxp Hilbert matrices

N plane-wave orbitals with antiperiodic boundary condi-
tions p„(x) =L 'i exp[2n(n+ —,

' )x/Ll This action of
the operator exp(izcN„) on such a state gives another SD
of orbitals p„'(x) diff'ering from p„only in the interval

(O, r) where p„' = —p„. Hence, the quantity D(r) is

given by the determinant of the N xN overlap matrix A

between y„(x) and p' (x):

2zix (n —m)/L2
'

n, m n, m
L-x 0

This matrix, being separable, has only r+1 eigenvalues
diff'erent from unity" and therefore its determinant can
be reduced to that of a (r+1)x (r+1) matrix 8. Tak-
ing the thermodynamic limit at fixed r, 8 can be written
as

defined by

1 1F —=+-n, m &n —rn+ 2

where the numerical constant 2 =0.645002448. . . is for-
mally given by

InA = g I ln 1
— +1 1

I~[ 4I 4I
—

—,
' (i+ y)

and y is the Euler constant.
Having determined the asymptotic form of D(r), we

substitute our result into the right-hand side of Eq. (13)
which gives

, cos(2kFr)
t/2

where kF =zp/2 is the Fermi momentum of the interact-
ing electron gas. This result together with Eq. (12) gives
the long-range behavior of the spin-spin correlation func-
tion in the Hubbard model at p = —,',

(S(0) S(r)) 3 J2I cos(2kFr)
ln (r/2)

+0 ln rI ~l+ ~

r 2
(16)

Equation (16) is the main result of this paper. It shows
that the spin-spin correlations of the HM at quarter
filling have a power-law decay characterized by an ex-
ponent y= —,'. This can be contrasted to the Heisenberg
result y=1, valid for the U ~ HM at half filling. The
physical origin of the change in the exponent y upon

doping can be attributed to the umklapp process, present
only at half filling, which enhances the antiferromagnetic
correlations.

Although the derivation we have given in this Letter
strictly applies to the p = —,

' case, we have found that the
same power-law decay is generally valid at any density
away from half filling. However, in this case our deriva-
tion is not so simple and rigorous as in the quarter-filled
case because standard techniques for the asymptotic ex-
pansion of a Toeplitz determinant cannot be applied for
the matrix B~ I =8(j—I) of Eq. (14). The main prob-
lem is that the Fourier transform of the function 8(n) is

discontinuous, and this spoils the derivation of the basic
theorem (Szego's theorem) which governs the asymptot-
ic expansion of a Toeplitz determinant. In order to cir-

The determinant of Hilbert matrices can be analytically
computed. The behavior for large p of the determinant
of (15) is given by

D(r=2p —1) =(—1)pdetF+detF
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RG also predicts power-law decay of the density-density
and spin-spin correlation functions as in the TLM. In
the TLM all these singularities are related by scaling
laws (valid for any value of the coupling constants):

4y=P+4, 16pe=(P —4)', (17)

where the exponent P characterizes the long-range decay
of the 4kF oscillations present in the density-density
correlation function. Numerical studies s" have provid-
ed indirect indications that scaling to the Tomonaga-
Luttinger model might be exact at U

Now we are in the position to check, for the first time,
the validity of such a hypothesis in the strong-coupling

cumvent this problem, we might regularize B(n) by in-

troducing an additional parameter A which smoothens
the discontinuity in its Fourier transform. In this way
Szego's theorem can be applied but we are forced to in-

terchange the order of the two limiting procedures
r ~ and A 0. Assuming that the leading term in

the evaluation of the singular Toeplitz determinant (14)
does not depend on the order in which the limits are tak-
en, the same power-law decay r i is obtained at all
densities. Although we have not tried to demonstrate
that such an asymptotic expansion is mathematically
rigorous, we have verified that the leading behavior
C„a:cos(2kFr)/r' does not depend on the possible
choices of the regularization. This fact supports our pre-
vious assumption.

In summary, we have given the first analytical evalua-
tion of an important correlation function of the 1D HM
at strong coupling. Previous renormalization-group
(RG) studies' predicted that, in the weak-coupling re-
gime, the HM for pW I scales to the exactly solvable
(spin-isotropic) Tomonaga-Luttinger model (TLM) with
renormalized coupling constants. According to this
analysis the HM is a marginal conductor for pal
(without a well-defined Fermi surface) characterized by
a power-law singularity at kF,

n (k) -n (kF ) —c i k —kF i sgn(k kF ) . —

limit of the HM. In fact, from Eq. (3), it is clear that
the density-density correlation function at U ~ coin-
cides with that of free spinless fermions, yielding P=2.
This, together with our previous result y = 2, is con-
sistent with the Tomonaga-Luttinger exponents (17) pre-
dicted by the RG weak-coupling analysis. Therefore this
result strongly suggests that even for U ~ the HM
scales to the TLM.

According to this hypothesis the momentum-dis-
tribution exponent is exactly given by 0= —,'. The non-

vanishing value of 8 indicates that the 1D HM remains,
for U ~, a marginal conductor, which cannot be de-
scribed by standard Fermi-liquid theory.
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