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Magnetic-Field EH'ects on Strongly Localized Electrons
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The magnetic-field response of strongly localized electrons is probed by examining the quantum in-

terference of forward-scattering paths. With no disorder, there is a rich structure in the tunneling rate,
which is sensitively dependent upon commensurability of the flux per plaquette with the flux quantum.
With nonmagnetic impurities, there is a positive magnetoconductance, and the localization length ap-
pears to increase as 8'/ . With impurities breaking time-reversal symmetry, the distribution of tunneling
rates is not changed by the magnetic field.

PACS numbers: 71.55.3v, 05.40.+j, 72.20.Dp, 75.10.Nr

Recently, there has been much emphasis on the
influence of quantum-mechanical eA'ects on small de-
vices. An important example is provided by the reprodu-
cible fluctuations observed in the conductivity of small
wires as a function of changing magnetic field or exter-
nal voltage. However, most studies of such fluctuations
have focused on metallic wires, or systems close to the
metal-to-insulator transition. '

By contrast, there is

much less understanding of characteristic fluctuations on
the insulating side, where the main mechanism for con-
ductivity is variable-range hopping. The transmission
(hopping) rate between two sites is obtained by summing
over all the tunneling paths connecting them, and as such
is a random variable. An important question is how the
distribution function for this variable is modified by a
magnetic field. This forms the main topic of this paper,
and is relevant to various magnetoconductance measure-
ments.

For electrons tunneling under a nonrandom potential,
introduction of a magnetic field leads to a negative mag-
netoconductance (MC). This is due to destructive quan-
tum interference between the various tunneling paths.
However, even in this case, there are very characteristic
fluctuations in the transmission probability. Periodic or
quasiperiodic tunneling rates (as a function of distance)
are obtained, depending on whether the flux per pla-
quette is rational or irrational. In a random impurity
potential, there are no longer simple phase relations be-
tween contributions of different paths. The tunneling
rates again Auctuate in the presence of a magnetic field,
but there is an overall positive MC. This is somewhat
surprising as the traditional explanation of a positive
MC relies on backscattering paths that are unimportant
in the strongly localized regime. Instead we offer an ex-
planation relying only on forward-scattering paths. Our
results are obtained by using transfer-matrix methods to
sum the contributions of such paths. This approach pro-
vides both an efficient numerical tool and an analytical
understanding of the results. Our observations are
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The terms in the perturbation series can be illustrated
graphically by paths I connecting the end points, and i r
are the sites along each path. (A is a magnetic vector
potential defined on the bonds. ) The sum over these
paths is convergent up to the delocalization transition,
beyond which very long paths dominate the sum. In the
strongly localized regime, however, since there are addi-
tional factors of V/(E —e;) « 1 for each link in the path,
only the shortest paths need to be considered. This
reduction to the shortest (forward-scattering or directed)
paths is a considerable simplification, and allows us to
obtain some interesting results in the strongly localized
regime. For sites separated by a distance t along a diag-
onal of the square lattice, Eq. (2) can be rewritten as

where the sum is now only over the directed paths, as
shown in Fig. 1. There is an overall exponential decay

relevant to the decay of gap states into a bulk (no ran-
domness), and to the conductivity of doped semiconduc-
tors (with randomness).

The localization transition in the Anderson Hamiltoni-
an

P =pe;a; a, +g VIa; aq (I)
i (ij)

can be studied by performing a "locator" expansion,
valid in the limit

l V;, l
=V«E —e;, where e; is a ran-

dom site energy and E is the electron energy. Indeed,
for V=O, the eigenstates are just the single-site states,
and the localization length is zero. For V/(E —e;) « I,
various quantities can be obtained perturbatively around
this solution; e.g. , the Green's function (overlap) be-
tween initial li) and final l f) sites is
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FIG. I. Directed paths of length t connecting diagonally
separated points on a square lattice. The figure shows the pair-
ing of paths due to the averaging process; the arrows indicate
whether paths are charged (arrows in same direction) or neu-
tral (arrows in opposite direction). The "diagonal staggered
gauge" choice is also indicated.
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is easily diagonalized by Fourier transforms for each r.
As the matrices for diA'erent r commute, their product is
also thus diagonalized. Finally, J(B,t) =8'(O, r) =&0

I

proportional to the length of each path, and all the in-

terference information is contained in the sum J(t)
This latter quantity is calculated numerically and
theoretically by the transfer-matrix method.

We first consider the nonrandom case with all e; =0.
The magnetic-field response of extended states can be
obtained from the work of Hofstadter. Here we focus
on the behavior of localized states. In the absence of a
magnetic field (8-A =0), clearly J(t) =t!/Ht/2)!] '
-2'. With BAO, there is a destructive interference be-
tween paths due to the dephasing factor of exp(iBA),
where A is the area enclosed by paths, leading to a neg-
ative MC. However, as Fig. 2 indicates, the resulting in-

terference patterns can be quite complicated. We define
a quantity W(x, r), which is the sum over contributions
of all paths connecting the origin to the point (x, r).
This quantity can be calculated recursively in r with the
use of a transfer matrix T(r). With the appropriate
choice of gauge, the transfer matrix will have no x
dependence (but will depend on r). This choice, the "di-
agonal staggered gauge,

" corresponds to A(r) = ~ ar/2
(Fig. I), with a=2m&/po being the fractional flux per
plaquette. The resulting transfer matrix between col-
umns r and v+1,

—1.0—
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FIG. 2. Behavior of J(r,8) for large fields. The flux per
plaquette is (a) rational, p/po 0.6, and (b) irrational, p/$0

(J5 —l )/2 (golden mean).

xg,'-i T(r) I 0) is given by

J(t,B)=g g 2cos —p
p r I 2

(4)

(The allowed values of p, with periodic boundary condi-
tions on N sites, are + 2rrk/N. )

Equation (4) embodies various distinct behaviors. For
small fields such that less than one flux unit goes through
the entire "sample" (between the hopping end points), it
can be shown that lnI J(8) I

—in! J(0) I
-8 r . This

behavior can be justified by regarding the important
paths as executing a random walk (bx —r '/ ) in the
transverse direction. The behavior of J(r,B) for large
fields, when many flux units penetrate the sample, is
more complicated and crucially dependent on whether or
not the flux per plaquette is rational or irrational. In the
rational case, a=2'/q, there is a periodicity of r =2q,
where the value of J is repeated (except for an exponen-
tial rise). This is indicated for ts/&so=0. 6 in Fig. 2(a).
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When a is irrational, the sequence of transmission rates
appears quite random, as illustrated in Fig. 2(b) for

pl&0 = (JS 1)/2 =0 618
A positive MC has been observed in a number of re-

cent studies of doped semiconductors in the variable-
range-hopping regime. To account for these observa-
tions, Nguyen, Spivak, and Shklovskii (NSS) introduced
a model with site energies e; - ~ e with equal probabili-
ty. This model has been the subject of several recent
theoretical studies, " but the origin of its positive MC
had not been convincingly established. There are two
bands of width roughly 2V centered at E = ~ e, outside
of which the eigenstates are localized. For simplicity, we
shall focus on E 0, which is deep in the localized re-
gime (we have checked that the qualitative behavior is
the same for other energies E). In this case each site
crossed by the path contributes a factor rI; = ~ 1 to the
sum for J in Eq. (3). For a given realization of random-
ness, the transfer matrix can be used to exactly calculate
this sum. The results for many realizations of random-
ness then form a histogram for the probability
P[J(t,B)]. We applied" this method to the case 8=0
recently, and found that P [J] becomes very broad with
increasing t In fa.ct, our results indicated that (ln

~
J ~)

=(0.322~0.001)t, while (ln
~
J

~
) —(ln~ J ~) —(0.46

+ 0.05) 2t 2~3; i.e., the distribution for lnJ has a mean in-
creasing linearly with t, and fluctuations that scale as
t ' . The same procedure was extended to the case 8~0,
and the typical field dependences are shown in Fig. 3.
[As J becomes a complex variable in a field, we have
plotted the magnitude ln

~
J(t,B) ~.l We see that the

average value increases with 8, indicating a positive MC,
as expected. Furthermore, we find that P[lnJ(t, B)]
maintains its functional form at finite 8, except that the
average moves to higher values, while fluctuations de-
crease (still scaling as r '~, but with a smaller coef-
ficient).

The usual explanation for a positive MC, close to the
localization transition, relies on the decreased weight of
backscattering paths. Since in our formulation such
paths have been explicitly excluded, an alternative ex-
planation is necessary. In previous work, " we estab-
lished that to properly understand the numerically calcu-
lated shape of P[ln

~
J(0,r)

~ ], it is essential to keep track
of the correlations between paths. This can be done
theoretically by a replica analysis of the moments (J ")
(all odd moments vanish by symmetry). This is done by
drawing 2n paths connecting the end points. They are
then paired up into n double paths by the averaging pro-
cess (Fig. 1). For 8=0, upon each intersection the dou-
ble paths can exchange partners, resulting in a degenera-
cy factor of 3 that can be interpreted as an exchange at-
traction. This attraction leads to formation of a bound
state of the n paired paths. ' The partition function, cal-
culated by the transfer-matrix method, ' ' is

(J "(t))=2"'exp[pn(n —1)r], (5)
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FIG. 3. Average value of the logarithm of the sums over
directed paths vs the length t relative to the case B=0.

with p pa=0.053~0.002 from numerical simulations.
Here we extend the replica analysis to 8%0, by examin-
ing ((JJ )"). Two types of paired paths are encoun-
tered: (i) Partners are taken one from J and one from
J*. Such pairs (referred to as neutral) do not feel the
field since e'"e '" = l. (ii) Both partners are taken from
J or from J*. Such paths (referred to as charged) feel a
strong interference from the field corresponding to e '"
or e '". It is reasonable to assume that because of
their strong self-interference [see Eq. (4)], charged paths
of long length do not contribute appreciably to (J "), and
that dominant contributions come from neutral paths.
However, between successive intersections of two neutral
paths, short segments of charged paths can be present
(see Fig. 1). If the area enclosed between intersections is
A, then the overall multiplicity factor becomes 4+2
xcos(2BA). This is a decrease in the attraction from
the value of 2x3 =6 in the absence of a magnetic field.
The net effect of integrating out charged segments is
thus to reduce the effective attraction between neutral
pairs. This leads to a reduction in the binding energy p
in Eq. (5), simultaneously increasing the mean (the
linear term), and decreasing fluctuations (the cubic
term).

In fact, since Eq. (5) represents a one-parameter dis-
tribution, the changes in mean and variance should be
perfectly correlated. This has indeed been tested numer-
ically, and Fig. 4 shows the respective coefficients of the
mean and variance for different values of the field 8.
Our numerical results for small 8 (but r large enough so
that many flux units penetrate the sample' ) are con-
sistent with

p(8) =po
—(0.15 + 0.03) (p/po) '~'.

This implies J(r,B)=J(t,Br ); i.e., the important area
for the field is the whole sample, rather than a portion of
it. This dependence agrees with the reduction of the lo-
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FIG. 4. Numerical tests for correlations between the mean

and the variance of P[J(t,B)] for different values of B The.

random-phase point is also included.

In conclusion, we have numerically and analytically
investigated the MC of electrons in the strongly localized
regime. In the nonrandom case the probability of hop-

ping a distance t initially decays as 8 t when the flux

through the sample is small. For larger fluxes an intri-
cate pattern develops that is very sensitive to the com-
mensurability of the flux per plaquette with the quantum
flux. In the presence of nonmagnetic impurities we find
a positive MC, which in the large-flux limit grows as
B't . The details of these calculations and their implica-
tions for experiments and theories of electron transport
will be given elsewhere.
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by the Sloan Foundation (M.K.), and by the "Centro de
Investigacion y Desarrollo" INTEVEP S.A. , Venezuela
(E.M. ).

calization length predicted at the localization transition.
Currently, we can offer no explanation of this depen-
dence from the replica analysis.

A finite magnetic field breaks time-reversal symmetry
by introducing complex phases for each path. It has
been argued that this effect is equivalent to replacing the
sign (+ ) randomness with a complex-phase (e' with
0 & 8 & 2tr) randomness. ' We also simulated the
latter model, and found that it shows no MC. This can
be easily explained in the replica language: After the
averaging over random phases only the neutral paths sur-
vive, and such paths do not couple to the magnetic field.
Indeed by totally eliminating the charged paths, we

achieve an extreme limit of the reduced attraction be-
tween neutral paths that was described earlier —it is easy
to check that the exchange attraction upon the crossing
of two neutral paths is just 2. As Fig. 4 indicates, the
model with random phases occurs as the extreme limit of
the distributions found for the ~ model in a field. Thus,
the random-phase model does not directly correspond to
the original disordered NSS model in a field. It may,
however, be relevant to magnetic impurities that break
the time-reversal symmetry of the original Hamiltoni-
an. ' Yet another indication of the phase correlations
inherent to the magnetic field is the equality of (J (B,t))
with + impurities with J(2B,t) in the nonrandom prob-
lem, an identity easily established by replica analysis,
and confirmed by numerical simulations.
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