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Evidence of a Spin-Glass Transition in the Qnasicrystal Al73Mn2tSi6
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We give a definite answer to the question whether or not the quasicrystal i-Al»Mn2ISi& is a true
three-dimensional spin glass by measuring the linear (g.„and Zd, ) and dc nonlinear susceptibilities
[A3(T), . . .I. We show that the magnetic correlations expand over large distances with decreasing T and
that A3(T) diverges following the spin-glass transition scaling law with finite T„. From A3 and Zd, we

deduce separately and in the H-0 field limit the number (1.3% of the Mn concentration) and the mo-

ment (large, 7.See) of the magnetic entities, which can be attributed to Mn clusters.

PACS numbers: 75.10.Nr, 61.50.Em, 75,40.Cx

Three different structural AlMn(Si) phases can exist:
amorphous, quasicrystal (QC), and crystalline. For a
comparable concentration x of Mn, a crystal is not mag-
netic, reminiscent of Kondo systems, in contrast with the

QC and amorphous phases. ' So which structural ar-

rangements produce differences in the macroscopic mag-
netic properties between the three phases? Before
answering this question, one has to characterize the mag-
netic states of the amorphous and QC phases. We are
dealing with a nontrivial structure, where the electronic
mean free path is small (of the order of interatomic dis-

tances), and where possibly only a few Mn atoms are
magnetic. Therefore one has to answer the following

questions. Can correlations between the magnetic Mn

exist? Over which spatial scale g and over which space
dimension d can they expand? Does a transition exist;
i.e., does g diverge at a critical temperature T, '? In QC
and in amorphous phases, the ac susceptibility g„(co
=const, T) exhibits a cusp' at a temperature T,
which depends on co following a Fulcher law, and mag-
netic hysteresis is present at low temperature. This is

the reason why the term spin glass (SG) is generally
used for these systems. Actually the definition of a SG
transition is the divergence of g at T„. But neither a
cusp of g„nor magnetic hysteresis are probes of the spa-
tial expansion of the magnetic correlations and a fortiori
of a phase transition: These properties are observed in

true SG's as well as in standard superparamagnets where

the correlations can exist only within clusters of con-
stant finite size (. In the latter case, thermally activated
energy barriers for overturning the cluster moments are
responsible for the cusp of g„and for the hysteresis.
Only the measurement of the equilibrium linear (g,q)
and nonlinear (Ai, Aq) susceptibilities of the magnetiza-
tion M above T gives a definite evidence of a transition.
The Curie constant C, and A3 and 25 are the prefactors
of the odd powers of pqHg'kT of the series expansion of

M and appear in the development of M/H as follows:

M/H C/T Ai(T)(ist—tH/kT) (1/T)

+A5(T)(pttH/kT) (1/T)—

Here T should be replaced by T + 8 in the case of a
Curie-Weiss behavior. If A3 is T independent, the sys-
tem is a superparamagnet whereas if A3 diverges at T„
it is a spin glass. This point is the first purpose of this

paper.
Another unanswered question is what are the values of

the number N and of the effective moment p, tT of the
magnetic Mn in a sample containing NT Mn atoms?
This question follows from the drastic x dependence of
Np, tt deduced, for instance, from the Curie constant
C Np, p/3k above T or the hyperfine term CH

=NHh„, (Hh„„,-p, f) of the specific heat. s Np, tt van-

ishes below x 15%, increases very rapidly with x, but
never reaches the value obtained in various other Mn al-

loys, i.e., for N NT and p, tr=5ptt. To know whether

N/NT or p, tr (or both quantities) vary drastically with x,
requires a second equation. Theoretically, it is given by
the saturated magnetization M„, Np, tt. But even very

large fields cannot saturate M as is the case for SG.
Moreover, field-induced moments on the nonmagnetic
Mn can appear in large fields' and spoil the result. In
this paper, we use the fact that the ratio Ai/C allows us

to deduce p,g in the 0=0 limit. We focus on the study
of a QC (x =21 at.%) in an attempt to answer the above
questions.

To illustrate that C, Ai, and Aq are powers of g, we

use the following physical picture for a system of N
spins, each of moment p, fr. The spins can be correlated
by exchange interactions J only within clusters of linear
size ( (given in spacing units). This results in N/n
independent clusters each of n spins (n =( ) and of gi-
ant moment m. Then n is a measure of the cluster size.
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The paramagnet case corresponds to n=l. M can be
calculated with the standard magnetic parameters:'"
M=(N/n)&M), where (M) =mpqL(mpgH/kT) per
moment mpit of a cluster and L(X) X/3 —X /45
+ . . is the Langevin function used in the classical ap-
proach for isotropic m directions. One finds C =

3

x(m /n)Nps/k, A3, g Cm, and A5-m . For only
+J interactions, m=np, g. C-n gives the cluster size.
For random +J, —J interactions (as in SG's), the vari-
ance (m )' of m equals Jnp, ir leading to the same
linear susceptibility (C=Np, g/3k) as for paramagnets.
But A;2+1(T) &m-)'-n(T)'. Then it is A3-n (and
not C) which gives the cluster size. The model applies
simply to superparamagnets at low T, like, for instance,
Fe clusters in alumina: g is the T-independent cluster
size. Thus n and m are T independent, and C, Aq, and
A5 are also.

In ferromagnets and SG's, the thermal ffuctuations
split the system in N/n clusters; at decreasing T, g(T)
and n(T) increase (and diverge at T, ) while N/n de
creases. For ferromagnets, C nd-iverges at T, . In a
SG A 3 n diverges as n at T, while /t, q

=C/ T is not
critical. For T, finite, one has that g(T)-t ', where
t =(T T, )/T. Th—en n =not ' and A ; 2+-1r
which allows us to recover the standard equations:

Ai(T)/C m /15 Br ", A5 —r

with y=dv, P=0. At this step the model only fails to
account for PWO. Considering a fractal dimension d
for the clusters, one corrects the model' ' by assuming
that P(n) -n ' i is self-similar up to n, „(T)

This yields y=(2d —d)v, P (d —d )v. Oth-
er laws are also predicted for Ai(T) since ((T) depends
on d/d„where d, is the lower critical dimension: 2 & d,
& 3 in SG for local Ising spins. ' At d & d, no transi-

tion occurs' but A3 varies as T . At d=d„T, =0
and' A3-exp(l/T ). At d=3, Ai and As diverge at
T,&0.

At finite T„an important result of the complete calcu-
lation is the value of B in Eq. (2): B=Knop, &/15. For
identical clusters K 1, but in the general case K de-
pends on the distribution of cluster size P(n) over which
one integrates &M) . In previous studies we deduced
Kno=1 ~0. 1 for two SG's which diff'er by the range of
the interactions and where p, q is known: a Ruderman-
Kittel-Kasuya-Yosida (RKKY) CuMn '' and an insulat-
ing Mn fluorophosphate. ' In the following, we assume
that Kno =1 also in the present case.

Ribbons (=20 pm thick) of A173Mn2iSi6 were melt
spun under He atmosphere. X-ray diffraction shows that
the sample consists almost entirely of the icosahedral
phase, with no other phases and with less than 5% of re-
sidual Al. In the latter no more than 3% of Mn is ex-
pected which will not affect the magnetic properties of
the sample since Al-3%Mn solid solution is not rnagnet-
ic. Both M and g„are measured by an extraction
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FIG. 1. Susceptibility data vs I/T

method in the same custom built magnetometer"' con-
taining 0.22 g of ribbons. Special care is taken to have T
stable within a few mK at varying field. Each data point
is obtained from a numerically filtered set of fifty extrac-
tions. We can detect M ~ 10 emu with a resolution
better than 1 part in 10 for M ~ 10 emu.

Linear ac and dc susceptibilities are plotted as a func-
tion of 1/T in Fig. 1. g„(h„=0.5 Oe, ro =22 Hz, T) is

maximum at T 5.82~0.05 K (open circles). M(T)
(solid circles) is measured in a dc field H=365 Oe. g,q

(crosses) is deduced from the M(H) analysis (see
below). All the data in the 7.5-17-K range and g,q

down to 6 K can be accurately fitted by g,„=go+C/T
(see Fig. 1) with C=5.30&10 emu/g and @0=1.2
x10 emu/g. M/H and g„deviate from g,q below 7.5
K due, respectively, to the increase of the nonlinear
terms of M(H) at decreasing T and to dynamical eff'ects.

We attribute the Curie term C/T to the magnetic Mn
and go to the matrix including the Kondo-like Mn. So
we will fit M/H —

go by Eq. (1).
Equilibrium nonlinear susceptibilities are obtained

from the plot of M/H as a function of (I/T)(@AH/
kT); see Fig. 2. The data at T=const lie on a curve
which intercepts the H=O axis at g,q [see Eq. (I)]. The
initial slope of the curve equals A3. At decreasing T, A3
decreases rapidly and, for a given H/T range, strong de-
viations from the initial slope appear due to the rapid in-

crease of the H, H, . . . , terms of M/H. At low T, A3
must be deduced from low-field data (i.e. , where M is

small): below 100 Oe at 6 K. This is all the more
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FIG. 2. M/H vs Hi/T'. We subtract g,q(T) to M/H to
show all the da e ata in the same figure. g,q(T) corresponds to the
crosses in Fig. l.

ifficult since Ai has to be obtained from the first 1% de-
viatioiis 0 M to peqH [see the segment repres t I /en ing o

g,q ) in Fig. 2). It requires a relative accuracy
better than 1 part in 10 for H, M, and T. To obtain ac-
curate values of geq A3 and As in the H=O limit at low

T, we use a least-squares polynomial fit of M/H vs H
up to moderate fields ( & 500 Oe) where our accuracy is

much better. Ai(T)/C is plotted versus T in Fig. 3. The
vertical bars indicate the relative error ( & 10%) on A i.

df
The existence of a phase transition is suggest d b th

rastic variation of Aq(T) and As(T). First, to check
tliat A 3 and A s are powers of the same quantity g(T),
we plot A5 vs Ai in the log-log plot inset of Fig. 3. Ex-
cept for the T 6-K data, less accurate because they
were obtained at very low fields, the points lie on a
straight line of slope S 2.3 over several decades of Ai
and As. When we identify S with 2+y/P [see Eq. (2))
we obtain P 0.3y. The next step is to deduce T, . First,
no laws proposed for d ~ d, fit the data. In Fig. 3 the
datata ~o not lie on a straight line over any range of tem-

perature in the plots: log(As) vs log(T) and log(Ai) vs

/T which correspond, respectively, to the d &d, and
=d, predictions. Equation (2) applies for d & d, . At

given T„, the least-squared linear fit of Y=log(A /C) vs

lo 'i

3 vs

og(t) provides y, 8, and the error F. [=((Y
s I

;„.~, & i& of the fit. E is reduced significantly by re-

jecting the data obtained far from T„ i.e., 12 and 16 K.
In the 6-10-K range, E is a minimum for T, =5.42 K
(see inset of Fig. 4) leading to y=3.3 and 8=3.6. From
P=0.3y, we find P = l. In Fig. 4, the data plotted in a
Iog(A&/C) and log(A5) vs log(t) diagram for T, =5.42
K lie accurately on straight lines of slope y=3.3 and

2y+P =7.6.
We now determine p,a. It equals (7.4 ~0.4)pa given

y q. ,2&. p,p =15 B, for 2nD=1 +0.l. From the Cu-E (

s

10 15 20 T(K)

FIG. 3. log(A3/C) vs log(T) and vs I/T' A5 is shown to be
a power of A3 in the log-log inset.

rte constant, we deduce the number N=4.9 x10'q
moments/g in the sample containing 3.84x10 ' Mn/ .
Thus N equals 1.3% of the Mn concentration, but each

x ng.

moment includes an unknown number of Mn atoms. We
now discuss the results.

i) Many previous fits of g by a sin le 1

obtain the order of magnitude of Np, q for studies of the
x dependence of g. They lead to 8~0. The refinement
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FIG. 4. log(A3/C), log(Aq/C), and log(V, ) vs log[T/(T
—5.42 K)]. V is h, *

t e correlation volume to be read using th

3/C curve. The error F. of the fit of log(A3) vs log(t) is
shown to be minimum for T, 5.42 K in the inset.
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of the analysis allows us to state 0=0 near T, providing
an important result for SG. It means that there are
equal weights for the +J and —J interactions. Our ar-
gument is all the stronger since we can deduce g,q down
to 6 K, impossible to do with only ac measurements or
large dc fields (see above). Deviations from the Curie
law are observed above 17 K, in agreement with the gen-
eral T dependence of 0 in interacting paramagnets, al-
ready noted' in QC. At high T, 8 gives the value and
the sign of the nearest-neighbor interactions. At de-

creasing T, 8 can change when the spatial range of the
interactions increases.

(ii) The correlations can spread over very large dis-
tances: the correlation volume V, = [(T—T, )IjT)j
normalized to 1 for T=~, can be very large at low T.
Since dv= y+2P we have V, =(A3/8) '+ Pt' and
v=1.75. In Fig. 4, we plot in a vertical scale the values
of V, corresponding to A3. One notes the huge value of
V„at 6 K: 2.4&&10s which is, however, much smaller
than the typical volume (= 1 pm ) of a QC grain. Be-
cause of the large value of v (3 times that of 3D fer-
romagnets for instance), V, is large even far from T, .
For example, V, 63 at T=10 K =1.84T, .

(iii) p, s(7.5p t)tis larger than in classical SG (-5ptt
in CuMn„with x (1%). It can be due to either a clus-
ter of Mn (of course our study cannot give the number of
Mn per cluster) or a symmetry-induced moment' on

Mn in an icosahedral environment resulting in an
enhanced density of states at EF. But the question is are
such sites present in the i, decagonal and amorphous
phases which exhibit similar magnetic properties? Early
studies of diluted alloys' interpreted within the cluster-
ing assumption show that the Kondo temperature Ttt
(Ttt ) 600 K for a single Mn in Al crystal' ) is reduced
down to zero with increasing number of Kondo impuri-
ties per cluster. Since Mn first neighbors are observed
in i-A175Mn2~Si6 in contrast with t' AlsiMn-~7, we corre-
late the increase of the magnetic parameters with the
possibility of Mn as nearest neighbors. We reject the hy-
pothesis of moments only due to clusters in QC grain
boundaries since the same magnitudes of the parameters
are observed in amorphous phases. Finally, the substitu-
tion of Mn by Fe, for instance, ' to deduce p, tt may
affect the moment of remaining Mn: What then is the
moment of a MnFe cluster?

We have shown that the QC A173Mn2~Si6 is a true
three-dimensional spin glass with a very small fraction
(1.3% of the nominal Mn concentration) of magnetic
moments. Indeed, T, is finite and the values of y, p, and
v are similar to those found in other d=3 SG. We note
that T (22 Hz) is close to but larger than T, as in other
SG, due to critical dynamics effects (see Fig. 1). In ad-
dition, we suggest that the QC is a RKKY spin glass: It
exhibits a similar phase transition and T (to = 100 Hz)
= T,-(J) follows a variation with Np tt (given, for in-

stance, by the specific heat T -CH ) similar to that

found in CuMn„and AuFe„(T -x ). Indeed, in the
case of I/R magnetic interactions: (J)-p,a(1/R ) and
(1jR )-N. But in contrast with canonical low-concen-
trated SG, the value of p,g is larger than that expected
for a single magnetic Mn in metals.
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ment of the experiment, J. P. Renard and P. Beauvillian
for preliminary measurements, A. Briggs for a critical
reading of the manuscript, and J. C. Grieco for prepar-
ing the sample.
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