
VQLUME 64, NUMBER 15 PHYSICAL REVIEW LETTERS 9 ApRIL 1990

Ronghening Transition and Percolation in Random Ballistic Deposition
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A simple ballistic model for surface growth, which considers a mixture of "sticky" and "sliding" parti-

cles, is introduced and numerically investigated in dimensions d=2, 3, and 4. The model exhibits, in

d 3 and 4 (but not in d 2), a roughening phase transition, of the type recently predicted by Halpin-

Healy. For the 6rst time it is sho~n that such kind of surface transition is accompanied by a transition

in the bulk which is characterized by a singularity in the compacity-versus-concentration curve and

which occurs at the threshold of a (d —1)-percolation transition.

PACS numbers: 68.70.+w, 05.40.+j

Deposition of particles on surfaces is a phenomenon of
considerable scientific interest with a broad range of
practical applications. Even when such processes pro-
duce a compact, uniform, and nonfractal deposit, the
external surface generally exhibits a rough character
whose intensity varies both with lateral size of the sub-
strate and time (proportional to the height of the depos-
it). The theoretical investigation of the scaling proper-
ties of surface roughness, by means of both numerical
and analytical tools, is a fascinating subject which be-

longs to the very active field of nonequilibrium statistical
physics and irreversible growth phenomena' where new

universal behaviors are discovered.
Numerical simulations of deposition processes were

pioneered by Void, but it was only after the introduc-
tion of fractal geometry that they were extensively ana-

lyzed in terms of scaling concepts. The simplest model,
called "ballistic deposition, " considers, in its "strip"
two-dimensional version, a basal horizontal line of length
L [the generalization to d dimensions considers a

(d —1)-dimensional hypercube of edge L) on which par-
ticles are deposited, one after another, along randomly
positioned vertical trajectories. Particles become part of
the deposit at their positions of first contact (nearest-
neighbor contact when on a lattice). This model has
been extensively studied both on and off lattice. To
analyze its surface properties, the following scaling form
has been proposed:

rJ- L'f (h/L

where h and v are, respectively, the height of the deposit
and the thickness of its surface. The scaling function

f(x) satisfies f(x) const when x ~ and f(x)—x~

when x 0. Hence, the scaling behavior of o. is
diA'erent with L for large h, cr-I. ', than with h for large
L, o-h~. The most accurate numerical estimates of a
and P, in two dimensions, are very close to a= —,

' and
P= —,'. Realistic extensions of this model were con-
sidered in which possible surface diAusion, or particle
restructuring, is included. In particular, when a com-
plete restructuring is considered, i.e., when the particles

8h(r) -U+ vali(r)+Drt(r)+X
~
Vh(r) ~'. (2)

In this expression, h(r) is the vertical coordinate of a
surface point whose other (d —1) coordinates are de-
scribed by r; v is a constant proportional to the bulk
compacity which can be dropped as far as only surface
properties are concerned; the Laplacian term describes
surface-tension effects and favors surface smoothing;
rl(r) is a Gaussian random variable with zero mean
which describes the noise; and the fourth (nonlinear)
term, which has been first introduced by Kardar, Parisi,
and Zhang, describes the lateral growth of the surface.
In two dimensions, it has been shown'o that, without the
nonlinear term, the solution of the Burgers equation fol-
lows the scaling Ansatz (1) with a —,

' and P = —,', while,
when the nonlinear term is included, the exponent P is

changed into P —, . This is perfectly consistent with the
results of numerical simulations since one can argue that
a complete restructuring kills lateral growth and favors
the Laplacian term.

The investigations in higher dimensions, both analyti-
cal and numerical, are presently very active. Kardar,
Parisi, and Zhang pointed out that d=3 must be a criti-
cal dimension above which the scaling of the full equa-
tion (2) should change. Recently, Halpin-Healy, ' using
nonlinear renormalization-group techniques, was able to
make some more precise predictions. The behavior of
(2) is governed by the strength of the reduced coupling
constant K =AD/v t . For d (3 strong coupling should
prevail for all X&0 while for d & 3, there should be,
when increasing X,, a transition between a weak-coupling

are allowed to slide on the surface until they reach the
nearest local minimum, it is found that the scaling form
(1) is still valid, but with a different P exponent, P
while a remains equal to —,

' .
It is now generally believed that such models are

discrete versions of the continuous model introduced by
Edwards and Wilkinson and subsequently modified by
Kardar, Parisi, and Zhang. These authors describe the
growing surface using a stochastic Burgers equation:
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and a strong-coupling phase, this transition becoming a
mean-field type above d, =5. No prediction is done for
d=3, but one might expect some interesting marginal
behavior. These predictions are in contradiction with the
hypothesis of "superuniversality, " i.e., growth exponents
independent of spatial dimensionality, formulated ear-

It is of great importance to test numerically if the pre-
dictions of Halpin-Healy are observed in discrete models.
%e know about two very recent numerical works able to
recover a transition in d 3 using modified ballistic mod-
els. ' ' In the work by Amar and Family, ' the connec-
tion with the Burgers equation is not fully transparent,
while in the work by Yan, Kessler, and Sander (YKS),"
an ad koe parameter p is introduced whose effect is to
smooth the surface exactly as does the Laplacian term in

(2). Our method, which consists of interpolating directly
between the nonrestructured and the completely restruc-
tured ballistic model by considering a random binary
mixture of particles that slide or stick to the deposit upon
contact, although very close, appears to be more power-
ful than that of YKS since it can be the subject of off-
lattice extensions as well as interesting experimental
realizations. Moreover, it allows us to analyze the
surface-roughening transition through the bulk proper-
ties of the deposit. We are able to show that the transi-
tion is characterized by a singularity in the compacity-
versus-concentration curve, which is very weak for d =3
and stronger for 1=4 and which is accompanied by a
peculiar percolation transition in the cross section of the
bulk.

The present model is built on a d-dimensional simple
cubic lattice, the base being a (d —1)-dimensional hy-
percube, Hd ~, perpendicular to the vertical direction.
Particles are deposited one after another. After n parti-
cles have been deposited, the surface is defined by the in-
teger function h (i,n), where i E Hd ~ defines a
"column. " One starts with a fully occupied base, i.e.,
with h(i, L ') =1 for all i To de. posit the (n+1)th
particle (n & L ') one proceeds as follows. A column
io is chosen at random in H ' to define the lateral posi-
tion of its trajectory. Then, if a random variable (uni-
formly distributed between 0 and 1) is smaller than c,
the particle is a "sticky" particle, otherwise it is a "slid-
ing" particle. A sticky particle is deposited in column l'0

at h =max~[h(io, n)+ I,h(j, n)], where j runs over the
2(d —1) nearest neighbors of io and Hd ~ (periodic
boundary conditions are considered at the edges of
Hd ~). Thus, in that case, one sets h(i, n+ I) =h(i, n)
for all i, except h(io, n+ I ) =h . A sliding particle, in-
stead, follows the path of steepest descent on the surface,
jumping from column io to column i[,i2, . . . ,i~ accord-
ing to the rule that if min~h(j, n) & [h(i~, n)l, i~+ ~ is the
j value, or is chosen at random among the j values, real-
izing the minimum. The process stops when
min, [h(j,n)] ~ h(i~, n) and the particle is then deposit-
ed in column i~, i.e., one sets h(i, n+ I ) =h(i, n), for all
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i, except h(i~, n+I) =h(iz, n)+1. Note that a sticky
particle may leave some holes in the bulk, while a sliding
particle cannot. Moreover, according to the rules, once
created, a hole can never be filled, even by a sliding par-
ticle.

Our model interpolates between the completely res-
tructured ballistic model, for c=0, with a compacity
equal to 1 (no holes) to the plain ballistic model, for
c 1, with a compacity lower than 1. At each step n of
the deposition process we are able to calculate the mean
height of the deposit, h, its compacity, p, and the thick-
ness of its surface, cr, using the following formulas:

h = d, gh(i, n),
Ld —]

n

(3a)

(3b)

(3c)

In our calculations, we have grown deposits of modest
sizes, but we have systematically averaged our results
over many independent runs to improve the statistics and
understand clearly the size effects. In this Letter we
present preliminary results, mainly to demonstrate the
existence of a transition in d=3 and 4 and to show its
manifestation in the bulk. We have considered L values
up to L „„=128,64., and 32 in d=2, 3, and 4, respec-
tively, and, to estimate the large-h saturation values of o
and p, we have grown deposits of height h =64L and
averaged the results over ten runs. Other calculations
have been done to estimate the exponent P and will be
reported elsewhere together with further results.

In Fig. 1, we have reported the saturated values of cr

as a function of L for different c values (log-log plots).
While for d=2 the curves are all roughly parallel and
consistent with a=-, , for d=3 and 4 there is a clear
threshold, c„at which an abrupt change of slope occurs.
Below e„o seems to saturate to a finite value when in-
creasing L, while just above c„one observes a linear be-
havior for logo vs logL up to the largest available size.
Although the saturation is more evident for d=4, we
think both results for d=3 and 4 below c, are consistent
with the weak-coupling logarithmic (a =0) behavior pre-
dicted by Edwards and Wilkinson. From the slope of
the curves just above the threshold, one obtains the esti-
mates a=0.39~0.05 and 0.34+0.05, for d=3 and 4,
respectively. These values are perfectly consistent with
the result a=2/(d+2) of Kim and Kosterlitz;' howev-
er, due to our large error bars, one cannot completely ex-
clude the alternative prediction a=1/d of Wolf and
Kertesz. ' Far above the threshold, one obtains a lower
slope. Ho~ever, since one can reasonably assume that
there should be no crossing between curves of diff'erent c
values, this eA'ect is certainly due to finite-size correc-
tions and, for very large L, one should recover the same
a exponent (we have tested this is not due to an underes-
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FIG. 1. Large-h saturated value of 0 vs L (log-log plot) for
diff'erent values of c. Cases (a), (b), and (c) correspond to
d 2, 3, and 4, respectively.

FIG. 2. Large-L saturated value of the bulk compacity, p, as
a function of c. Cases (a), (b), and (c) correspond to d-2, 3,
and 4, respectively. The line corresponds to the equation

p c+1 —cp, ~here cp is the concentration threshold for site
percolation on a (d —1)-hypercubic lattice (c~ 0.5927 and

0.3117, for d —I 2 and 3, respectively).

timation of the saturated cr value for large L and c).
Thus the apparent linear behavior observed for large c
might be followed by a change of slope for larger-L
values.

In Fig. 2, we report the estimated large-h values of the
bulk compacity as a function of c. While the curves for
d=2 do not reveal any peculiar behavior, the curves for
d=3 and 4 exhibit a sigmoidal shape which become
more and more marked with increasing I.. From a more
quantitative analysis, which will be reported elsewhere, it
appears that the maximum value of in(8p/t)c) increases
linearly with lnL for d=3 and 4. However, for d=3,
this increase is quite small and this might be the signa-
ture of a marginal behavior. Furthermore, when consid-

ering, for large h and L, a (d —1)-dimensional horizon-
tal cut of the deposit, one observes that c, corresponds to
the site percolation threshold of the ensemble (sticky
particles and holes). To demonstrate this more quantita-
tively, we have reported in Figs. 2(b) and 2(c) the
straight line of the equation p =1 —e~+c, obtained when

equating c+1 —p, concentration of sticky particles and
holes, and c~, threshold for site percolation on a (d —1)-
dimensional hypercubic lattice. ' This line cuts the ex-
trapolated curve exactly in the range where lies the ex-
pected c, value, which can be more precisely estimated to
be c, =0.37+ 0.01 and 0.26+ 0.01, for d=3 and 4, re-
spectively. This result provides a very simple image of
the roughening transition. Knowing that a hole in the
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bulk is always located below a sticky particle, the transi-

tion corresponds to the appearance of an infinite connect-
ed cluster of sticky particles when the surface is seen

from the top. Hence, while below the threshold, a sticky
particle most probably falls in a smooth "valley" of slid-

ing particles; above the threshold, it sticks with a finite

probability to the rough infinite cluster of sticky parti-
cles. It is interesting to notice that this percolation tran-
sition does not involve the vertical direction (i.e., time)
and thus we think no trivial link between the deposition
growth indices and the exponents of d —I percolation
should be expected.

In summary, using a very simple ballistic model which

considers a mixture of sticky and sliding particles, we

have given evidence for a roughening transition in d=3
and 4. In addition, we have shown that this transition is

accompanied by a phase transition in the bulk of the de-

posit, characterized by a singularity in its compacity-
versus-concentration curve and corresponding to a
(d —I )-percolation transition. Much more numerical

work is needed on this model to make the present results

more precise, especially in the vicinity of the transition,
and this will be the subject of further studies. Other
trivial, but realistic, extensions are in progress, where

sliding particles may fill the holes, or can be stopped by

sticky particles of the deposit, etc. Moreover, one should

study off-lattice analogs of these models, for example, by
modifying the existing three-dimensional off-lattice mod-

el with restructuring. ' Although the exponents will be
difficult to estimate, the singularity in the compacity,
however, should show up from a finite-size analysis.
These models also suggest very simple practical realiza-
tions and we hope that there will soon appear some ex-
perimental evidence for the d=3 transition.

We thank R. Botet for discussions. Numerical calcu-
lations were done at CIRCE (Centre Inter-Regional de

Calcul Electronique), Orsay, France.
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