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New Phase of Matter in Lamellar Phases of Tethered, Crystalline Membranes
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A qualitatively new, "decoupled" phase of matter occurs in lamellar phases of tethered, crystalline
membranes at large membrane separations d. This decoupled phase has no first-order elastic couplings
between successive membranes; as a result, translational order falls off algebraically, with a universal ex-

ponent transverse to the membranes. The universal d dependence of the elastic constants is calculated,
as is the critical separation d, at which the decoupling phase transition occurs. Untethered, crystalline
membranes melt, as d is increased, at some d & d, .

PACS numbers: 64.60.Fr, 68.55.—a

Thin crystalline membranes have very unusual elastic
properties. ' Thermally excited transverse fluctuations
of a membrane renormalize its in-plane Lame coeffi-
cients p and A, to zero at long wavelengths, while its
bend rigidity x is driven to infinity. 2

These theoretical ideas may be tested in lamellar
phases of surfactant bilayers in multicomponent
fluids, which consist of a periodic stack of thin lamel-
lae of surfactant molecules (of thickness 8-30 A)
separated by larger regions of liquid.

This paper treats lamellar phases of tethered, crystal
line membranes. In practice, tethering can be accom-
plished by polymerizing the membranes. My principal
result is that, as the mean spacing d between successive
membranes is increased, the system of membranes un-

dergoes an equilibrium phase transition, from a conven-
tional three-dimensional solid for d & d, to a "decou-
pled" phase for d & d, . Typically, d, —1000 A, which is

experimentally accessible. "
The two phases differ in their elastic energies. The 3D

solid phase is described by the usual elastic theory for a
uniaxial solid. s In the decoupled phase, the elastic con-
stant css 0, exactly, and each membrane acts like an
independent 2D solid. When css vanishes, the bending
energy (K/2) Jd r(r/~2u, ), where u, is the displace-
ment field orthogonal to the membranes and K is the
bulk layer bending stiffness, is important.

In both the 3D solid and the decoupled phase, all of
the elastic constants, except css, decrease algebraically at
large d. Specifically, c66~c«a-d', c)3~d, c33
~d ' ', and K~d' . Here r=3.1~0.2 is the
universal exponent for the entropic interaction between
membranes. ' At large d in the 3D solid phase,
css ~d, with

rss(d) = 2T

2 —ri2o(Go d)

where the nonuniversal exponent ri2n (Go,d) =2(d/
d, ) ' for d far from d, . Near d„rip/(Go, d) =2 —C
x(1 —d/d, )' as d d, , with C a small constant of
order (b/d, ) 'i «1, where b is the membrane thickness.

This implies that as d d, ,

O(1)
C(1 —d/d, )' '

Co(r) a: (r/a) "", r «(„(T), (2)

Co(r) a-exp[ —ari2o(r/(„)"'], g„&««L~(d), (3)

Co(r) ~ (r/a) "' ' ' ', r && I, (d),
where po and Xo are the bare areal Lame coeScients of a
single membrane, the exponent q2n (G,d) is always & 2

I emphasize that css can get so small that the 3D solid

phase may be experimentally indistinguishable from the

decoupled phase. This will be described elsewhere. "
The elastic constants can be determined either through

direct mechanical measurements, or correlation func-

tions. The 3D solid is characterized by perfectly sharp

Bragg peaks, since the Debye-Wailer factor with cssWO

is finite. In the decoupled phase, the Debye-Wailer fac-
tor diverges, and translational order decays algebraically.

Order transverse to the membranes is measured

directly by x-ray scattering S(q) at wave vectors q near

mG~~i, where G~~—=2x/d. As in a smectic-A liquid crys-

tal, '2' in the decoupled phase S(q) has the form S(q)
ee lq —mG~~z

'+"'" '
for qlli and S(q) ee Iq —

mG~~

xiI "'" for q
—mG~~iJ i. Here risM(m) porn

and rio kaTG~~/Sm(BK)', where

c )'s(d)
B(d)-c33(d) —

( ) ( )
~

As in fluid membranes, '
qo is universal.

The translational order within each membrane can be
described by expanding the two-dimensional density p2
within the membrane in a Fourier series:

p&(r~) -p&+gpG(r~)e'
(GI

where lG~J is the set of reciprocal-lattice vectors of the

membrane. I find that the correlation function Co(r)
—= (po(r)po(0)) has three regimes of behavior:
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in the decoupled phase,

kaT I G I' 3po+) o
t12po(6 =

4ttpo 2po+Xo
'

k, r IGI' 3c66(d)+c~~(d)
4zc66(d) d 2c66(d) +c ~ ~ (d)

8 K'p

rt~ =——2 0.58+'0.17,
(poker) '" '

./4
L~(d) =&„

d pp

K'p

and a=o(1).
The form of the in-plane scattering S(q~) near q&

=6 implied by (2)-(4) is

S(qi)~ tq~ —Gl """"', tqi —Gt»4, '
~

S(q&) a: tq&
—Gt ", (& » tq~ —Gt &&AG, (6)

S(q~) ce const+ t q&
—G I

(7)

tq —Gt «L '(d),

where dG=[t)zD(6)] "'&, 'cx' IGI""' Note the sur-

prising minus sign on rt~ in Eq. (6). Note also that,

since rt20(G, d) is always & 2 in the decoupled phase,

S(q~) remains finite as q~ G; it may or may not have

a cusp, depending upon whether or not rt20(G, d) & 3.
This structure is extended in rods in the q, direction.

I will now sketch the derivation of these results, begin-
ning by reviewing the unusual elastic properties ' of an
isolated crystalline, tethered membrane.

In such a membrane, the two-dimensional areal Lame
elastic constants p and X become wave-number-q-

dependent quantities, both vanishing as q 0 like q",
where g~ 0.58+ 0.17 is a universal exponent. ' Like-
wise, the bend modulus x that determines the energy cost
of bending the membrane Eb,„d = —,

' fd r x/R (r), where

R(r) is the local radius of curvature, diverges2' as
q~01ike q ", with" t1= & (2 —rt&) =0.71~0.08.

The mean-squared real-space thermal fluctuation
(h (r)) t L of the transverse displacement h of a mem-

brane of lateral extent L is

(h (r)) t k T, =O(1)x L
kgT

"~~' ' x-(q)q' Kp

where I have used the fact that x'(q) =xo(q4&)
x O(1) for q(„«1, and xp is the "bare" (short-distance)
value of x.

The unusual form of the in-plane correlation function

CG(r) given in Eq. (3) is due to the vanishing of p and

Using the phase relation pG(r) =pPe' " ', where pI",

6is a constant leads to C (r) a:(e' " ' " ). In the
harmonic approximation,

r

CG(r) cx:exp[ —
& (tG [u(r) —u(0)] t')] =exp I 6 I ka T d q 1

—cos(q. r) 3p+X
(2tz)' pq' 2p+~

(8)

In this harmonic approximation, the integral in (8) is

logarithmic in r, and's Co(r) ~ r " G with rt(G)
=(

t 6 t kttr/4ttp)(3p+), )/(2p+) ). Since anharmonic
effects are unimportant for r«g„, this power-law re-

sult is valid on those length scales, with p and A, given by
their bare values pp and A,p, respectively. This implies

Eq. (2). For r»g„, the anomalous elasticity invalidates

this power-law result. However, Eq. (8) still remains
valid, provided that one replaces the constants p and X

with the renormalized, wave-vector-dependent quanti-

ties p(q) =pp(qg„)"'xo(1) X(q) xo(1) for qg„«1.
Using these in Eq. (8) gives Eq. (3) for CG(r).

Once a membrane is one member of a stack of identi-

cal membranes of mean spacing d, its perpendicular fluc-
tuations (h )' are bounded, since it will bump into its

neighbors once (h )'t & d. This will happen if the la-

teral extent L of the membranes exceeds a critical value

L~(d) at which (h )'t =d. Using

(h'( )) t, =(k, r/, )L' g„O(I ),

this implies L j (d) =g„(d2pp/xo) 'tt~

L~(d) is also roughly the distance between points of
contact of two neighboring fluctuating membranes. ' As-

signing to each contact a free energy of order ktt T (since

ke T sets the free-energy scale for entropic effects), one

obtains an entropic interaction' ' per unit area between

1742

V,„,(d)-, x O(1)
Lg d

ktt T xp

ppd

' 2/(2-11)

CK

tl Venic,(d) =
Bd

(kyar)'-

K'p

lCp

ppd

& (r+1)/2 '
Pp

PCp

' 3/2

xo(1) md

The suppression of transverse fluctuations of the mem-

brane by its neighbors clearly aA'ects the renormalization

of the elastic constants p, A„and x. In fact, the fluctua-

tion contribution to these quantities coming from all

where'p the exponent z=4/(2 —rt). Combining this with

the numerical simulation ' result r =3.1 + 0.2 gives

rt =0.71 ~ 0.08, from which the scaling relation rt j
=2(1 —rt) gives t1& =0.58+ 0.17.

The fact that the fractional change in the layer spac-

ing Bd/d =B,u, implies'
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wave numbers q & L &
' (d) now becomes finite, ' since

the transverse fiuctuations are suppressed far below their
free-membrane values at such wave numbers. Hence,
the wave-number dependences of p(q), A, (q), and x(q)
are cut off once qL4 (d) —1; and all of these quantities
become constants for qL3 (d) «1. These constants do
depend strongly on d, however. This dependence can be
determined by matching the constant values p. (d), X(d),
and x(d) for qL& ((1 onto their wave-vector-dependent
values for qL & » 1 at qL ~ = l. I thereby obtain

L..(1)
xO(1)p(d) -po

2
' (r 4)/-2

po
=Pp

PCp

L. (1)

x O(1) ce d' cx: g(d),

x O(1)x(d) =xo
IJ

~ r/2 —)

po
xo

PCp

xO(1)~d' '

Because p and A, are now constants at sufficiently large
distances, the in-plane translational correlation function

CG(r) will again become algebraic. This implies Eq.
(4), with

kaT I G I' 3p(d)+X(d)
4n p (d) 2p (d) +X(d)

I Go I

Here I have defined

8'(d)14 '[2p(d)+X(d))
ka T I Go 12[3p(d)+~(")]

7Cp

Po

~ [/2 2
[/(4- r)

@pa

kgT
x O(1),

—QJo(d)g 1 r[[pP (r)l*pg (r)+c.c.}. (9)

Quite generally, the renormalization-group eigenvalue

yg of the coupling strength of any operator gfd r O(r)
added as a perturbation to a Hamiltonian is given by
yg=d —rto/2, where rto is defined via (O(r)o(0)) Ig-o
rxr "'. For Jo, O(r) - [p((," (r))*pg (r)+c.c. Thus

Go is the shortest reciprocal-lattice vector of the mem-

brane, and a =2/r/I Go I.
The divergence of tI2(3(G, d) implies the existence of

the decoupled phase for 1&d, . To see this, first note
that the most general coupling between the translational
order parameters pP (r) and pP (r) in successive mem-
branes is'

' r/2-)
x'o d po

K'p

T 3

c) 3 can be calculated by first noting that contacts be-
tween two neighboring membranes must locally change
the in-plane lattice constants a near the point of contact
by some amount Aa, (since no symmetry forbids such a
change). Thus the average in-plane layer constant a(d)
should obey a (d) a (rrrr) +/3a, A„„„„/L~ (1), where

A„„t„tis the area around a point of contact over which

the lattice constant is affected. A simple argument
shows that ,AgOnrrrxor//k/3T, where r/ is the range of
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the relevant correlation function is

([pg"(r)) *pP'(r) pP '(0) [p((;"(0))') IJ -()

=([pg"(.))*pg"(0))' I.. .
—C(2)( ) ~ —2gIIt(G. d)

3

where I have used the fact that in the unperturbed
(Jo =0) Hamiltonian pg' and p((; are decoupled. Thus,
in this case rto =2310", whence the renormalization-

group eigenvalue yG of JG is yo 2 —)I2(3(G,d). Since
tI2t)(G, d) diverges as d arr for any temperature T,
and for any material parameters po, Xo, and xo, there al-

ways exists a critical distance d, beyond which even the
largest yG is less than zero namely, that at which

r120(Go, d, ) 2. This criterion is readily seen to lead
precisely to the d, defined with such foresight earlier.

For d & d„all of the yG's are & 0, all of the JG's re-
normalize to zero, and in-plane translational order in

successive membranes is effectively decoupled. For
d & d„successive membranes are coupled, and the sys-

tem is a conventional three-dimensional solid. Thus
there is an equilibrium phase transition at d d, be-
tween the two.

For untethered (i.e., unpolymerized) membranes, an
in-plane melting transition necessarily pre-empts this
decoupling transition, because isolated 2D crystals with

r/(Go) & —,
' melted' by dislocations [recall r/2(3(Go, d)

& 2 in the decoupled phase).
This melting would be interesting in its own right, and

would show up as a 3D-solid to stacked-hexatic' transi-
tion. However, dislocations can be excluded from the
membranes by polymerizing them, thereby forbidding
bond breaking.

The elastic constants other than c33 can be computed
as follows.

The in-plane elastic constants css and c(( are just the
bulk analogs of the two-dimensional elastic constants p
and X computed earlier, and are given by

' r/2 —2.o(1)
d d xo

and c~ ((d) X(d)/d =c66(d) x O(1). Likewise, the bulk
bend elastic constant
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the interatomic forces. Thus I obtain a(d) =a(~)+ha,
x tcort /ktt TL & (d). Now consider compressing the mem-

branes closer together, which requires making 8,u, WO.

Using the fact that B,u, =Bd/d, one finds that the
change Aa(8, u, ) in the average lattice constant is

tia tcort
2

da = d8, u: = —rha,
&

|):u, .
kttTL~ d

Since V3 u~ ha/a, I find that V& u&= —[rila, tcort/
akttTL3. (d)]8,u, . On the other hand, minimizing the
elastic energy over u~ for fixed 8,u, &0 gives V3 u~

(ct 3/c f ] )t), u, . Equating these two expressions gives

K'OP'I
2

K'pI'I2

c13 c I I x O(1) = x O(1) i
ktt TL~ (d) ds

with

c t'3(d)
B(d) =C33(d) —

( ) ( )
tx:

—z —
1

This smectic form for the elastic energy for u, immedi-

ately implies that all static correlation functions involv-

ing u, in the decoupled phase are the same as in a smec-

tic phase. Using the expressions for the various elastic
constants derived here, one can show that the smectic ex-

ponent rio is universal as d ~ eo, as asserted earlier.
I thank Cyrus Safinya and Didier Roux for arousing

my interest in this problem, and the Institute for
Theoretical Physics, Santa Barbara, California (NSF
Grant No. PHY82-17853, supplemented by funds from

NASA), for their hospitality.

assuming /La, O(a(~) ).
Finally, css can be expressed in terms of the inter-

membrane cou lings JG(d) in Eq. (9). Writing pP
pgexp(iG u&' ), that equation can be rewritten in

terms of the in-plane displacements u~.

QJG~pG~ cos[G (u~' —u )jd r.

Eg,
(L i Go i ) kttT

2/yGO

kaT I Go I',

and hence css(d) ~d "" with

yG, 2 —ri20 (Go,d )

A renormalization-group analysis to higher order in JG,
leads" to the results for ri(Go, d) and yes(d) near the
transition summarized earlier.

Integrating the variable u& out of the partition func-—PH(ll J.~Mz ~

tion Z= fDu&Du, e ' ' w—hen css=0 leaves an
eA'ective elastic Hamiltonian for u, alone of the canoni-
cal smectic form

H, s(u, ) = —,
' „d'r(B(d)(8,u, )'+ Jt(d)(V~u, )'I,

Expanding the cosine for small G (u&~'3 —u~t2 ) and com-
paring the result with conventional uniaxial elastic
theory gives css QGJG(d) ~pG~ ~G~ d. For large d,
JG(d), like the entropic interaction V,„, described ear-
lier, is clearly dominated by the points of contact be-
tween adjacent membranes. This implies that JG(d)
=EG/L 3 (d), where EG is a d-independent energy scale.

This "bare" JG will be further renormalized, with
renormalization-group eigenvalue yG, by in-plane fluc-
tuation eA'ects. As a result, the physical, renormalized
Jg","' is given by

'Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett.
57, 791 (1986); Phys. Rev. A 35, 3056 (1987).

2J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Lett. 60,
2634 (1988).

3D. R. Nelson and L. Peliti, J. Phys. (Paris) 48, 1085
(1987).

4D. Roux and C. R. Safinya, J. Phys. (Paris) 49, 307 (1988).
5C. R. Safinya, D. Roux, G. S. Smith, S. K. Sihna, P. Di-

mon, N. A. Clark, and A. M. Bellocq, Phys. Rev. Lett. 57,
2718 (1986).

F. Larche, J. Appell, G. Porte, P. Bassereau, and J. Marig-
nan, Phys. Rev. Lett. 56, 1200 (1986).

7N. Beredjick and W. J. Burlant, J. Polym. Sci. A 8, 2807
(1970).

Even if the membrane symmetry allows anisotropic in-plane
elasticity, the anisotropic part vanishes more rapidly as d
than c«and cll, and this statement becomes asymptotically
exact, as in isolated elastic membranes [see J. Toner, Phys.
Rev. Lett. 62, 905 (1989)].

9See, e.g. , P. G. de Gennes, The Physics of Liquid Crystals
(Oxford Univ. Press, London, 1974), Chap. 7.

' S. Leibler and A. G. Maggs, Phys. Rev. Lett. 63, 406
(1989).

' 'J. Toner (unpublished).
'2A. Caille, C. R. Acad. Sci., Ser. B 274, 891 (1972); T. C.

Lubensky, Phys. Rev. Lett. 29, 206 (1972).
' This conclusion contradicts Ref. 10.
'4W. Helfrich, Z. Naturforsch. 33a, 305 (1978).
' B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121

(1978); 41, 519(E) (1978); D. R. Nelson and B. l. Halperin,
Phys. Rev. B 19, 2457 (1979).

'6In Ref. 10, x was incorrectly taken to continue to diverge as

q "even for qL& «1. This led to their erroneous prediction of
long-ranged translational order.

' For an analogous problem involving X-Y spins, see J. M.
Kosterlitz and M. A. Santos, J. Phys. C 11, 2835 (1978).

' This statement depends on the existence of a minimum
magnitude Go to all of the reciprocal-lattice vectors G. In
membranes for which there is no such minimum (e.g. , quasi-
crystalline, glassy) the decouples phase would not exist.

'9R. Pindak, D. E. Moncton, S. C. Davey, and J. W. Goodby,
Phys. Rev. Lett. 46, 1135 (1981).

1744


