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Evolution of Weinberg's Gluonic CP-Violation Operator
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The renormalization-group evolution of Weinberg s purely gluonic dimension-6 CP-violating operator
is computed to first order in the QCD coupling constant, including its mixing with the quark color elec-
tric dipole moment. Our result for the anomalous dimension of the quark operator agrees with several
previous calculations. For the gluonic operator, we find the anomalous dimension to have the same mag-
nitude but opposite sign as a previous calculation. This significantly relaxes the constraints imposed on
extensions of the standard model by experimental measurements of the neutron electric dipole moment.
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It was recently pointed out by Weinberg' that there is

a CP-violating operator of dimension 6 that is construct-
ed out of gluon fields only. It can therefore give a contri-
bution to the neutron electric dipole moment that is not
suppressed by any light-quark masses or mixing angles.
This gluonic operator GG can be induced as a term in the
low-energy effective Hamiltonian by exchange of heavy
Higgs bosons, ' by the exchange of gluinos in supersym-
metric models, or by exchange of gauge bosons in left-
right symmetric models. The consideration of the
operator Go allows the constraints on CP violation from
experimental limits on the neutron electric dipole mo-
ment to be tightened significantly. A recent calculation
of the renormalization-group evolution of GG found it to
have a large anomalous dimension, ' so its coefficient is

magnified enormously by renormalization-group evolu-
tion from the heavy mass scale down to the hadronic
scale. By including this factor, which can be as large as
800, and imposing a naturalness condition on the source
of CP violation, one can rule out a number of extensions
of the standard model. ' '

Since the renormalization of the operator Go has such
a dramatic eff'ect, it is important to check the calculation
of its anomalous dimension and to investigate the eff'ects

of mixing with other operators. In this Letter, we calcu-
late the renormalization-group evolution of Go to first
order in the QCD coupling constant, including its mixing
with the quark color electric dipole moment operator Gq.
Our result for the anomalous dimension of Gq agrees
with several previous calculations. For the gluonic
operator Go, we find the anomalous dimension to have
the same magnitude but opposite sign as the previous
calculation. This changes an enhancement factor of 800
into a suppression by 800, significantly relaxing the con-
straints imposed on extensions of the standard model.
We also show that renormalization-group mixing be-
tween 6~ and Gq can be neglected, but that the color
electric dipole moment of a heavy quark can induce
significant corrections to the coefficient of 6~ by the
matching conditions at the heavy-quark threshold.

The purely gluonic dimension-6 CP-violating operator

discovered by Weinberg' is

G ( ) jfabc&u»PGa Gbcroc

where p is the renormalization scale and our convention

is p
' =+1. Under renormalization-group evolution, it

mixes with the quark color electric dipole moment opera-
tor

G (p) = —' e"" 'G„'~o&~T'q, (2)

which also contributes to the neutron electric dipole mo-

ment. The effective low-energy CP-violating Hamiltoni-

an obtained by integrating out particles at a large mass

scale M will include the terms

'Pcpv =C, (p )G, (p) + QCq (p )G, (p ) .
q

(3)

The p dependence must cancel between the coefficients
and the operators. Once the evolution of the operators
as a function of p is calculated, the p dependence of the
coefficients is determined. The initial values of the
coefficients at the scale p =M must be determined by a
separate calculation. Note that the operator in the first
term in (3) could equally well be replaced by g, (p )
X Go(p), where g, (p) is the running coupling constant
of QCD. This changes the anomalous dimension of the
operator significantly, but there is a compensating
change in the coefficient.

The operator Gq defined in (2) is the only hadronic
dimension-5 CP-violating operator. Since there are no
operators with which it can mix, it must be an eigenstate
under renormalization-group evolution. Its anomalous
dimension is the same as that of the operator G„'~
xo"'T'q, and has been calculated by several groups.
We have repeated the calculation with the same result,
so we only quote the final answer. The evolution of the
operator 6~ is

p Gq(p ) j'qqGq (p ),
a, (p)

4
(4)

1990 The American Physical Society 1709



VOLUME 64, NUMBER 15 PHYSICAL REVIEW LETTERS 9 APRIL 1990

where C4 =3 and CF = —,
' are the Casimirs for the ad-

joint and fundamental representations of SU(3) and Nf
is the number of light quarks at the scale p. To leading
order in a, =g, /4x, the running coupling constant g, (p)
satisfies p(|I/t)p)g, (p) = P(—a, /4')g, (p), where P= —,

&& (11Cg —2Nf )
To first order in a„ the gluonic operator 06 can only

mix with the quark operators Gq. Up to total deriva-
tives, there are no other gauge-invariant CP-violating
operators of dimension 6 or less that involve the gluon
field. Ignoring total derivatives since they cannot con-
tribute to an effective action, the renormalization-group
equation to order a, is

a, (p)
u GG(u) = '

yGGGG(u)
tip 4z

+y.,g, (u)G, (u)'. (5)

To leading order in a, , the running quark mass satisfies
p(6/rip)mq(p) =y (a, /4z)mq(p), where y„, = —6CF.

The previous result for yGG was calculated using the
background-field method. ' We use a different method
which requires the calculation of fewer diagrams. We
compute a particular term in the matrix element of the
operator fd x GG between two initial-state and two
final-state on-shell gluons. Since this is a scattering arn-

plitude and therefore gauge invariant, we avoid the com-
plications of mixing with gauge-noninvariant operators.
The p dependence of the operator can be determined by
calculating this scattering amplitude to first order in a,
with an ultraviolet cutoA' p on the loop momentum. Ac-
tually it is not necessary to compute the complete
scattering amplitude, because it has a pole in the invari-
ant mass q of two external gluon legs, and the residue
of this pole is also gauge invariant. The residue factor-
izes into a three-gluon vertex with perturbative correc-
tions and the CP-violating vertex with perturbative
corrections. Thus we can reduce the calculation of the
anomalous-dimension coefficient yGG to the calculation
of the divergent part of the matrix element of f d x GG
between two on-shell gluons, with the third gluon leg off
its mass shell. The third leg can be treated as if it were
on its mass shell. If it has momentum q and Lorentz in-

dex v, terms proportional to q can be dropped because
they do not contribute to the residue of the pole in q .
Terms proportional to q' can also be dropped because
they vanish after contracting with the three-gluon vertex.

Aside from wave-function renormalization on the
external lines, there are four topologically distinct dia-
grams that contribute to this amplitude and they are
shown in Fig. l. Each diagram contains quadratic diver-

gences which cancel after summing over the cyclic per-
mutations of the external lines. Only the diagrams 1(a)
and l(c) give contributions that survive after the sum
over cyclic permutations. Thus the problem has been re-
duced to the calculation of two diagrams.

(a) (b) (c) (d)

FIG. 1. Diagrams that determine the anomalous-dimension
coefficient kg. The circle with G inside represents the gluonic
CP-violating operator 8~.

If the Feynman rule for the CP-violating vertex is de-
rived straightforwardly from the expression (1), the cal-
culation of the diagrams involves complicated algebraic
manipulations of the Levi-Civita tensor e"' ~. This can
be avoided by using Dirac traces to automatically handle
the algebra for the Levi-Civita tensor. For example, the
Feynman rule for the CP-violating vertex with three
external gluon legs with incoming momenta p, q, r,
Lorentz indices p, v, X, and color indices a, b, c can be
written in an elegant form as the Dirac trace

|6 f 'Tr([p, y" ] [q, y "][r, y ] y5) (6)

where inside the trace p =p„y", etc.
We calculated the diagrams in Feynman gauge using

an ultraviolet momentum cutoff p. After using the
mass-shell conditions for the external lines, the divergent
parts of the one-loop correction to our matrix element
are indeed proportional to (6). From the coefficient

yGGa, ln(p)/4z we read off' the diagonal anomalous-
dimension coefficient yGG in (5),

ygG = —Cg —2' .

The contributions in Feynman gauge from the individual

diagrams are I IC&/2 from diagram 1(a), —23C~/2
from diagram 1(c), and 5C~ —2Nf from wave-function
renormalization.

The off'-diagonal coefficient yGq in (5) is computed in

a similar way. %e calculate the divergent parts of the
matrix element of fd x GG between two on-shell quarks,
with one external off-shell gluon line. The external gluon
can be treated as if it was on shell, allowing us to drop
terms proportional to q or q'. The only diagram that
need be calculated is one in which two gluons from the
operator attach to the quark line. The divergent part of
the diagram is proportional to m~u(p') [q, y'] yqT'u(p),
where q =p' —p. Reading off the anomalous dimension
coefficient, we find y~q =2C~.

If we use an alternative basis of operators for the
eff'ective Hamiltonian in (3), such as Gl(p) =g, (p)
xGG(p) and G~(p) =g, (p)m~(p)G~(p), the anoma-
lous-dimension matrix is changed. The diagonal co-
efficients analogous to yGG in (5) and y~q in (4) are
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yl )
=

yGo
—3P = —12' and yi2 =

yqq
—P+ y„, =4'—16CF.

As we will justify later, the mixing of the operators
GG and Gv can be ignored. The solution to the renor-
malization-group equations for the coefficient functions
is then

( )
YGGiP

g, (M)
C, (M),

C(p) = '
C (M).

'
g, (u) "-"
g, M

CG(p) = (8)

With initial conditions
xg, (M) /M, where c is

CP-violating Hamiltonian

/fcpy = gz(M)
M

g, (M)

g, (p)

C~(M) =0 and CG(M) =c
a dimensionless coefficient, the
(3) becomes

39/23
g, (M)

g, (p)
'

I 08/23

g, (p)'Go(p) . (10)

(a) (b)

FIG. 2. Diagrams that determine the shift in the coe%cient
CG(p) at the threshold for a heavy quark Q. The circle with Q
inside represents the color electric dipole moment operator Gq.

We have assumed five flavors of light quarks between the
scales M and p. The exponent in the second line of (10)
is the same as in Ref. 5 but of opposite sign. Thus in-
stead of a large enhancement of the coefficient of g, (p) '
x GG(p), we find a large suppression. Although some of
the suppression comes from the evolution of GG(p), a
larger part comes from having expressed the small cou-
pling constant g, (M) in terms of the much larger cou-
pling constant g, (p) at the hadronic scale. For this
reason, it is more natural to take GG(p) as the operator,
as in the first line of (10), leaving the factor of g, (M) in

the coefficient. Then there is only a modest suppression
from the evolution of the operator, but its coefficient is
small due to the fact that the operator is generated at a
scale M where the QCD coupling is small. We note that
to reproduce the result of Ref. 5, the anomalous-
dimension coefficient yoG in (7) would have to be 23'—2%I.

The operator G~ does not affect GG through its renor-
malization-group evolution, but it has a significant effect
in another way. As one evolves down through the mass

scale of a heavy quark Q, the color electric dipole mo-
ment operator Gg(p) for that quark induces a shift in

the coefficient of the gluonic operator Og. The shift
can be determined by calculating the diagrams in Fig. 2.
After summing over permutations of the external lines,
only diagram 2(a) survives and gives a finite contribution
proportional to a, (mg)/mg. Matching matrix elements
of the operator Co(p)GG(p)+Cg(p)Gg(p) just above
the threshold p =mg with the corresponding matrix ele-
ments of CG(p)GG(p) just below mg, we find that the
shift is

Co(mg ) = CG(mg+)

+Cg M
g(mg) ""

1 a, (mg)

g (M) 8x mg
. (»)

Thus this contribution to CG(p) at the hadronic scale in-

volves an enhancement from the evolution of Gg from M
down to mg, followed by a suppression from the evolu-
tion of GG from mg down to p.

This two-step process is in fact the simplest way to un-

derstand the results of Refs. 2 and 4. Their initial con-
ditions on CG came from calculating two-loop diagrams
in which the quark loop involved both the t quark and
the b quark. One can divide the calculation into two

steps, the first being the generation of the operator
Gt, (m, ) from a one-loop diagram at the scale m, . In the
second step, the operator Gb(mb+) induces the operator
GG(mb ) by (11). This approach has the advantage of
summing up all the leading logarithms of the form
a, In (m, /mb ).

We now justify our earlier claim that operator mixing
can be ignored. We need only consider mixing of Gg
with the heavy-quark operators Gg, because hadronic
matrix elements involving light-quark operators will be
suppressed by the light-quark mass. If CG(M) is non-

zero, renormalization-group evolution of GG down to the
scale mg will generate a contribution to Cg(mg ) on the
order of CG(M)mg. Applying the matching condition at
the heavy-quark threshold, we find that the shift in CG is
of the order of Co(M)a, (mg). This shift is suppressed

by a power of a, (mg ) compared to CG (mg ), and should
not be included unless one also computes the order-a,
corrections to the initial conditions and to the diagonal
evolution of 0~.

Finally, we discuss the implications of our result for
the constraints imposed on extensions of the standard
model by measurements of the neutron electric dipole
moment. The results that are most affected are those
that relied on an enormous renormalization factor due to
evolution from the t-quark mass scale down to the ha-
dronic scale. In particular, one cannot yet rule out maxi-
mal CP violation in either the Higgs sector or in super-
symmetric models. ' lf one accepts the estimates that
gave the enhancement factor of 800 in Refs. 1 and 5,
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then it should be replaced by a suppression factor of 800.
One should remember, however, that these estimates are
extremely sensitive to the lower end point for the renor-
malization-group evolution, and the suppression factor
could easily be overestimated by an order of magnitude.
If the gluonic operator Op is generated at the b-quark
scale, as in Refs. 2 and 4, the suppression factor will be
reduced by another factor of 5. We conclude that simple
extensions of the standard model with maximal CP viola-
tion are not yet ruled out. Nevertheless the purely
gluonic dimension-6 CP-violation operator remains a
powerful probe of the mechanism for CP violation, and
should serve as a stimulus for further improvements on
measurements of the neutron electric dipole moment.
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