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The scattering of a nonlinear wave packet as an envelope soliton by a one-dimensional disordered sys-
tem is studied. It is well known that in the linear limit the transmission coefficient decays exponentially
with a characteristic localization length. We predict, using a simple independent scattering approach
and soliton perturbation theory in the framework of the nonlinear Schrodinger equation, that strong non-
linearity above a certain threshold allows undistorted propagation of wave packets.

PACS numbers: 03.40.Kf, 05.60.+w, 42.20.—y, 72.10.—d

Wave propagation in nonlinear disordered media has
become an extensively studied subject in recent years'™
because of the complex properties and qualitatively new
effects arising from the competition of disorder and non-
linearity. Disorder in a linear chain generally originates
an exponential decay of the transmission coefficient (An-
derson localization, see, e.g., Ref. 5) that can be easily
extended to phonons, acoustic, and electromagnetic
waves, etc. It is also well known that, in the absence of
disorder, some nonlinear systems show excitations in the
form of localized wave packets (solitons) that propagate
without changes in their shape or velocity. It has been
shown that weak nonlinearity acting against disorder
changes the exponential-length dependence of the trans-
mission coefficient into a power-law one.'->* This Letter
aims to demonstrate that if the system’s nonlinearity is
strong, propagation of nonlinear wave packets as solitary
waves in disordered systems may be undistorted, i.e., lo-
calization effects completely decay because of nonlineari-
ty and, moreover, that there exists a threshold value for
this possibility of propagation.

We start from the dimensionless nonlinear Schro-
dinger (NLS) equation for the wave variable u (x,?),

it un+2|u|u=ex)u, €))

that arises in this form in a number of problems in
solid-state physics (see, e.g., Refs. 6-8); as an example,
it can be derived in the small-amplitude limit for the

sine-Gordon and ¢* models.” The term on the right-
hand side of Eq. (1), e(x)=eX,6(x —x,), describes
random-point impurities with equal intensities ¢ and ran-
dom positions x,, and it may represent, e.g., the structur-
al disorder of the associated system.

If we restrict ourselves to the linear problem neglect-
ing the last term on the left-hand side of the Eq. (1), the
study of the propagation of monochromatic waves in a
randomly inhomogeneous medium leads to the stochastic
differential equation — wuy,+ e(x)u =k 2u, where k is the
wave number, and to the important phenomenon of lo-
calization of states by random inhomogeneities due to
scattering.> Localization means that the transmission
coefficient T decays exponentially with the system length
L. If e(x) is a stationary ergodic random process, then a
positive finite number exists, the so-called localization
length A(k), such that L ~'InT(k)~—x"'(k), and
hence for large L [significantly wider than A (k)] very lit-
tle transmission is allowed. Thus, in the linear Schro-
dinger equation,*'? if the conditions €2 < k2< e’Lp and
p <k hold, the localization length turns out to be A(k)
=4k ?*/pe?;, p ~' has the sense of a mean distance be-
tween impurities.

The linear equation also leads to a decay of the trans-
mission coefficient of linear wave packets. The mean
value t may be defined for the whole packet as follows,

r=j;°°dk Pk — ko) (T(K)) )
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where P(k) describes the spectral structure of the pack-
et, kg is the carrier wave number, and

(T(k))=”—5/i _L_ _mexp —L 3)
2 A (k) 4 (k)

is the mean transmission coefficient with A(k) defined
above. Using the results of Refs. 5 and 10 it can be
demonstrated that in a general case the dependence of
on the length system L is always exponential but the
(positive) power of L in the exponent depends on the re-
lation between the parameters of the wave packet. So,
an exponential decay of the transmission coefficient in
the linear system characterizes both a single linear wave
and a linear wave packet.

Let us now consider the nonlinear case. The homo-
geneous nonlinear system (1) allows the distortionless
propagation of localized excitations in the form of en-
velope solitons,

expt—(iV/2)x—il(r*/4) —a’ly
coshla(x — V1)l ’

where a is the soliton amplitude and V is the speed. We
consider the scattering of the soliton (4) by a random
system of point impurities with equal intensities €. A
soliton incides on the disordered layer from the left, and
it decomposes into reflected (r) and transmitted (¢)
parts. After passing through each impurity the wave
packet will reorganize itself and become again a soliton
plus some small-amplitude waves. We can use the
change of the two NLS integrals of motion, the energy E
and the “number of quasiparticles” N, defined by

4)

us(x,1)=a

E=f" dxllu|*+e() lul>=ul 4,

N=f_°;dx|ui2,

to describe the process through two magnitudes: the
total-energy transmission coefficient T(E)=E,/E,-, that
is, the transmitted energy E, over the incident one E;,
and the “number-of-particles” transmission coefficient
T™=N,/N,. Of course, the constraints E, =E,+E,
=const and N, =N,+ N, =const hold.

When the concentration p of impurities is low, the
average distance between two nearby impurities is larger
than the soliton size. In this limit we may treat the
scattering by many impurities independently, T=1I1;T;,
T, being the transmission coefficient of the jth impurity.
It should be noticed that even in this approach random-
ness is still present through the use of mean transmission
coeflicients.

The transmitted soliton for the jth impurity is then the
incident one for the (j+ 1)th scatterer. So, we can write
(cf. Ref. 3)

(5)

Ejs1=E;T\P(E;/,N;), Nj+,=N,T'V(E,N;), (6)
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and
AEj¢1=E,+,—E;=—E;R/P(E; N;), @)
ANj+1=N;+1—N;=—=N,R{V(E;,N;), (8)
where REM =1 —T(E-M stand for energy and number-

of—partlcles reﬂectlon coefficients. These coefficients can
be calculated, for ¢ 1, by employing the soliton pertur-
bation theory based on the inverse scattering transform.?
The value R™ was already presented in detailed form
in Ref. 11. The expressions for these coefficients are

(N) =
RO = [y Flya), ©
EY_mEV [T 2
= 10
RO=2EV ("4 2y a) (10)
where
214 212

cosh?[(n/4a)(y*+a’>—1)]1 "’

and a=N/V. These results obtained in the Born approx-
imation are valid if e< 1 and V2> | €| a (see Ref. 11).

Using (2) and (4) and taking into account that there
are (Ax)p impurities in the interval Ax and that the soli-
ton energy and number of particles are functions of a
and V (see, e.g., Refs. 8 and 11) given by N=2a and

=L NW?2— { N?) we are able to derive from (7) and
(8) the following equations:

%———f dy F(y,a), (12)
V
‘;—z———f dy (2= DF(y,a)

~5 ), vFv, (13)
where the distance is measured in units of xo=64/7pe?,
i.e., z=x/xo.

In the linear limit, a <1, the system (12) and (13)
can be solved analytically yielding ¥ (x) =V (0) =const,
and hence

TWE(x) =N&)/NO) =EX)/E©@ =e ", (14)

where Ao=V2(0)/pe>=1/pR,, R, being the reflection
coefficient of one impurity. This result demonstrates the
exponential decay of the transmission coefficient. As we
can see, these equations show again the same behavior as
the one of the linear problem, where Ao =A(ko), and kg
has the sense of a carrier wave number of the packet.

In the case a2 1 the system was studied numerically,
employing the usual rectangles method to estimate the
integrals and Euler’s procedure to integrate the equa-
tions; some cases were verified with a leap-frog scheme
and the result was always fully satisfactory. In this way,
we concluded that the asymptotic change in T™E(z)
depends essentially on the value of the parameter a(0)
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FIG. 1. The transmission coefficient 7™ (z) =N(z)/N(0)
vs z when initial conditions are N(0) =0.01, ¥(0) =0.5 [a(0)
=0.02] (solid line is numerical; dashed line is analytical).

=N(0)/V(0) that is physically related to the nonlineari-
ty of the incoming wave: The greater a is, the larger the
number of quasiparticles in the soliton becomes, and the
smaller its spatial extension; on the contrary, if a is
small, the wave looks very similar to a linear wave pack-
et. It can be simply proved by computing the derivative
of a(z) that the solution a. of the transcendental equa-
tion a2 —2+ G (a,.) =0, with

G(a)Ej;wdy(yz—l)F(y,a)/LwdyF(y,a) ,

is such that ¢(0) =a, implies a(z) =a, along the whole
disordered layer. Even more, solutions of the system
(12) and (13) verify that a(z) is monotonically, strictly
increasing [decreasing] if a(0) > a, [a(0) <a.]. We
found by solving approximately the equation and also by
integrating the system (12) and (13) that a, = 1.28505.
Therefore, for initial conditions such that a(0) < a,, the
system evolves, in perfect agreement with the previous
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FIG. 2. The transmission coefficient 7 (solid line) and
the function V(z)/V(0) (dashed line) when initial conditions

are N(0) =0.625, V(0) =0.5 [a(0) =1.25].
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FIG. 3. Same as in Fig. 2 when N(0)=1.25, V(0)=0.5
[a(0) =2.5]. The initial decreasing is too fast to be clearly ap-
preciated at this scale.

analytical result (14), to a final state in which N tends
exponentially to zero while V' goes to a constant positive
value, and hence satisfying a(e) =0 as required (see
Fig. 1). If 1—a <a,, the decay consists of an initial,
slow transient and after that we find a fast exponential
behavior (see Fig. 2). Finally, initial conditions with
a(0) > a, lead to a situation in which both N and V be-
come practically constant (see Fig. 3) and so does a,
a(e) having some limit value around a==10. The pos-
sible behaviors of a are summarized in Fig. 4. The pre-
cise form of the dependence of the transmission coef-
ficients on z is determined not only by a but also by the
values of N(0) and ¥(0): In particular, the smaller
N(0) and V(0) are, the smaller the interval needed to
reach the asymptotic regime is, and so the initial slope
can be roughly 10° for N(0),¥(0) = 0.1, for instance.
Anyway, we must stress that the general property of
these curves is the same: Both transmission coefficients
tend to their asymptotic constant, nonzero values.

To sum up, we have considered the nonlinear wave-
packet scattering by a disordered system in the frame-

T T T T T T T
- - — =310
- E
— ~_ E !
N S~ 3
~— -
S ]
= 01
ST S S N E SN R B e 001
Q 0000 0 0005 00010
7

FIG. 4. The parameter a(z) for different choices of a(0).
¥(0)=0.1 in all three cases. Solid line, a(0)=0.1 [N(0)
=0.011; short-dashed line, a(0) =1 [N(0) =0.1]; long-dashed
line, a(0) =5 [N(0) =0.5].
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work of the NLS equation, and demonstrated that strong
nonlinearity can completely inhibit the localization
effects stipulated by the disorder. It is a very remarkable
feature that this effect appears over a threshold non-
linearity. Below this threshold, the transmission
coefficient tends to zero as the size of the system in-
creases, either exponentially (Fig. 1) or exponentially
after a short transient (Figs. 1-4). Above the threshold
value our model demonstrates undistorted motion of the
nonlinear wave packet along the disorder system; i.e., the
transmission coefficient does not decay (Fig. 3) and lo-
calization does not happen in the system anymore, prob-
ably because of the small soliton width for large values
of a. It is rather striking the fact that we have not found
power-law decays in any case; to this respect, we believe
that if this is to happen in our model, it should do in the
vicinity of a.. It is also possible that this is a conse-
quence of our simplifications, but we have not been able
to get a definite conclusion about this point.

As a matter of fact, the effect can be quite more com-
plicated. In our analytical considerations, we used a
simple independent scattering approach and Born ap-
proximation of the perturbation theory. We believe that
taking into account the additional small contributions,
e.g., interference during the propagation, should provide
a slow decreasing of the nonlinear transmission coef-
ficient (probably, logarithmically) as the size of the sys-
tem increases, so that the decay length may be regarded
as the sum of a nonlinear value, A,, and a linear localiza-
tion length, ;. A, depends mainly on the amplitude and
it is actually very large (it characterizes the decreasing
of the soliton amplitude to a small value which should be
much less than unity). The soliton transforms into a
linear wave packet due to scattering along a length of the
order of A,, and then it scatters as a linear object, its
transmission coefficient decaying exponentially. Since
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A >, the real scattering of nonlinear wave packets for
systems of length L <A, must be very small.
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