ERRATA

In a Clean High-T_c Superconductor You Do Not See the Gap [Phys. Rev. Lett. 64, 84 (1990)]

K. Kamarás, S. L. Herr,^(a) C. D. Porter, N. Tache, D. B. Tanner, S. Etemad, T. Venkatesan, E. Chase, A. Inam, X. D. Wu, M. S. Hegde, and B. Dutta

Our paper was unclear about the fits shown in Fig. 1. Above T_c we used a Drude part, a sum of three Lorentzian oscillators, and ϵ_{∞} ; below T_c we used a zero-width (δ -function) Drude part, three Lorentzian terms, and ϵ_{∞} . The fits were carried out at each temperature. The caption to Fig. 1 gave the Drude results at each temperature but only a rough average of the Lorentzian parameters. The actual Lorentzian ω_{el} , ω_{pl} , and γ_l (in cm⁻¹) which were used for the upper panel are as follows: at 300 K, for L_1 , 300, 3500, 260; L_2 , 730, 9900, 1700; L_3 , 3300, 14600, 7400; at 100 K, for L_1 , 300, 2600, 160; L_2 , 720, 10000, 1600; L_3 , 3300, 14600, 9000; at 20 K, for L_1 , 260, 3000, 120; L_2 , 870, 10000, 1400; L_3 , 3300, 14600, 10000. For the data in the lower panel, they are, at 300 K, for L_1 , 310, 2500, 230; L_2 , 730, 9600, 1600; L_3 , 3300, 14500, 8000; at 100 K, for L_1 , 310, 2300, 150; L_2 , 760, 9200, 1500; L_3 , 3300, 14500, 7500; at 20 K, for L_1 , 260, 2100, 100; L_2 , 880, 10000, 1500; L_3 , 3300, 14500, 10000.

The parameters interact strongly, so that any could be changed by about 10% and the others adjusted to give fits as nearly as good as shown in the paper. What is outside this generalization is that with decreased temperature L_1 appears to shift down and L_2 to shift up; both narrow somewhat. This can be seen in the data of Figs. 2 and 3.

Only the Drude parameters were used in further analysis in the paper, so that this erratum does not affect the major conclusion of the paper.

(a)Current address: Department of Physics, Virginia Commonwealth University, Richmond, VA 23284.