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Lifetime of the Bond Network and Gel-Like Anomalies in Supercooled Water
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We analyze the distribution of bond lifetimes in simulations of liquid water using a novel bond
definition. We find that the characteristic lifetimes of the bonds and of the "gel" network itself both in-

crease strongly when temperature is decreased —and even appear to diverge at a temperature well below
the freezing temperature —thereby providing an appealing physical picture of the anomalous behavior of
water in the supercooled region.

PACS numbers: 82.70.Gg, 61.20.Ja

The molecular structure of liquid water, as well as its
dynamic evolution, is an open question. The instantane-
ous structure of the liquid can be described as a "gel"
—a random network of hydrogen bonds (HB's) of mac-
roscopic extent ' —which is continually restructuring
due to the rapid breaking and reforming of the HB's on
a picosecond time scale. In recent years an increasing
body of experimental evidence has been accumulating to
suggest power-law behavior in the temperature depen-
dence of both thermodynamic and dynamic properties of
liquid water, which has been interpreted as evidence for
a singularity at an unattainably low value of the temper-
ature (the "Angell temperature" T~ of about —46'C).
The connection between this apparent singularity and
the structure and dynamics of the HB network that dis-
tinguishes water from other liquids has been difficult to
elucidate.

Here we present evidence suggesting that the dynamic
anomalies observed in the vicinity of T~ may be related
to a region of power-law behavior of the characteristic
lifetimes of the bonds and the connectivity properties of
the entire bond network or "gel." Our evidence is based
upon an analysis of the distribution of bond lifetimes
obtained —for five different temperatures —from exten-
sive molecular-dynamics (MD) simulations using a wide-

ly used microscopic model of liquid water, the ST2 inter-
molecular potential.

The main difficulty in studying bond properties —such
as local and global connectivity, or HB dynamics —using
MD simulations arises from the high degree of arbitrari-
ness in the definition of a bond for systems such as water
that have a continuous range of interaction energies.
Moreover, in the case of water, further arbitrariness
arises from the high directionality of the interaction and
the substantial libration (hindered rotation) which
modulates the time evolution of the interaction. The
most common ways to define a bond —according to the
instantaneous geometric or energetic properties of a pair
of water molecules ' -cannot strictly be extended to dy-
namics because of this fast librational motion. Only lim-

ited information on the dynamics has been extracted
from the simulations, although such information would

be particularly relevant to the description of the restruct-

uring of the HB gel.
In this work, we use a bond definition recently intro-

duced by Sciortino and Fornili (SF) who consider the
complete set of all interactions which have a negative in-

teraction energy V J between molecules i and j, and an

oxygen-oxygen distance r;, less than the maximum dis-
tance that allows a HB (3.5 A). In the following, we
shall call such interactions "bonds" to make clear that
the interactions considered here are quite distinct from
standard3 6 definitions of a hydrogen bond.

Our configurations are obtained by MD simulations of
216 ST2 particles in a cubic box of edge 18.6 A, with

periodic boundary conditions. The system density is 1

g/cm and the integration time step is 0.001 ps. The
starting configurations used are the final configurations
from an earlier MD simulation by Geiger et al. ,

' and
the same computer program is run in order to produce
200 ps of configurations. The configurations from the
last 100 ps are recorded on tape and are analyzed. Five
different temperatures, ranging from 350 to 235 K, are
studied. "

We first test the plausibility of the SF criterion by
demonstrating that a representative activation energy
can be associated with the bond, and that this activation
energy is related to the bond lifetime in a conventional
Arrhenius fashion (as expected for simple bond-breaking
processes' ). We choose the activation energy to be the
average energy (E;J) associated with the bond, where'

EJ=2V) + g Vtk+ g Vjt, .
lt, wl', J' lc wl', J'

Thus for each bond present in a selected configuration
we record the sequences of values assumed by E;J during
the time interval between the first appearance of the
bond and its first dissociation. To each bond we associ-
ate (i) a lifetime, given by the number of consecutive
configurations in which the same bond is present, and
(ii) a value for (E;~).

Figure 1 is a semilog plot showing the dependence on
bond lifetime r of (E;~), averaged over all bonds with the
same lifetime. The observed straight-line behavior sup-
ports an exponential dependence of r on (E;,), and the
increase of the slope with temperature is as expected
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FIG. 4. The fraction P (t) of molecules belonging to the
spanning cluster. At the beginning of the observation interval,
all the molecules belong to the same cluster; during the interval
we consider only the bonds "still alive" and neglect newly
formed bonds. From left to right, T 350, 299, 273, 247, and
235 K.

long to the same "infinite cluster. "' Therefore an order
parameter associated with the static instantaneous con-
nectivity cannot be connected to the collective behavior
observed in the supercooled region. We focus instead on
the time interval over which the spanning cluster restruc-
tures itself, i.e., on the lifetime rs, ~

of the entire bond
network or "gel."To this end, we follow the development
in time of the connectivity properties by analyzing the
properties of the clusters formed by bonds that have ex-
isted without interruption since the start of a given "ob-
servation interval, " and ignoring bonds that are newly
formed during this interval. The standard percolation
functions' —such as the fraction of sites belonging to
the spanning cluster P and the mean cluster size S

thu—s become functions of time
Figure 4 shows P (i) for five different tempera-

tures. ' We define rs, 1 as the time at which the initial
cluster ceases to span or, equivalently, to be the position
of the maximum in S(t). Our results, shown in Fig. 3,
have the same qualitative and quantitative behavior as
(r). The two quantities rs, 1 and (r) are not completely
independent, both being related to the actual distribution
of bond lifetimes. However, the spatial correlation
among the bonds and the topological structure of the
pseudolattice formed by the oxygen position are taken
into account only in the ig, ~

value. The approach to the
apparent transition is reflected also in an increase of
correlation among bonds, as we found in the progressive
reduction of the mean number of bonds needed to form a
spanning cluster when the system is supercooled.

In summary, from MD simulations using the ST2 po-

tential, we have found evidence for (a) a power-law de-
cay in the bond-lifetime distribution function P(x) fol-
lowed by a faster decay, (b) a sharp increase as T de-
creases in the average bond lifetime (r), and (c) a simi-
lar temperature dependence of the lifetime of the span-
ning cluster rs, ~. Our ST2 results may provide a micro-
scopic interpretation for the experimental evidence that
suggests a region of power-law behavior in the dynamic
properties of liquid water. Indeed, the MD calculations—showing that the characteristic lifetime rs, ~ of the
bond network gives the impression of diverging to
infinity —provide an appealing physical picture of the
anomalous behavior of water in the presently investigat-
ed range of supercooling.
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