VOLUME 64, NUMBER 14

PHYSICAL REVIEW LETTERS

2 APRIL 1990

Magnetic Domain Patterns as Self-Organizing Critical Systems
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In practice, large specimens of ferromagnetic materials settle into one of a large number of metastable
states, not necessarily into the energetically lowest state. We suggest that they tend to select marginally
stable states, in a manner similar to the process recently proposed by Bak, Tang, and Wiesenfeld. We
apply this idea to the formation of the so-called zigzag walls that separate oppositely magnetized

domains in a magnetic recording tape.

PACS numbers: 75.60.Ej, 02.90.+p, 05.40.+j

A few years ago, Bak, Tang, and Wiesenfeld'?
(BTW) proposed that complex dissipative physical sys-
tems starting from some unstable state, will not, in gen-
eral, tend towards the state of lowest energy. Instead,
they will organize themselves into a metastable state that
is “only just” stable. Possible realizations of these prin-
ciples by actual physical systems have been proposed,
among them the distribution of earthquakes,3 and, as a
demonstration of the original proposal, the shape of
sandpiles.

In support of their ideas, the authors of Refs. 1 and 2
cite an idealized model of a sandpile with grains in the
form of cubes so that the sides of the pile form a stepped
pattern. Perhaps the most primitive, one-dimensional
version of their model would be the following: If the vert-
ical height of a step exceeds that of one block, the excess
block is assumed to tumble down. States with steps of
width exceeding that of one block, would appear to be
more stable; however, if “sand” is added to the pile, that
excess width will be reduced until the width is exactly
one. Deviations from that minimally stable, or “criti-
cal,” state will return to a critical state in a certain
universal manner.

Problems in micromagnetics of ferromagnetic speci-
men are usually attacked either by mathematical anal-
ysis of the magnetization field, by large-scale computa-
tion, or by a combination of the two. As far as pure
analysis is concerned, the solutions, where they can be
found, yield configurations corresponding to either the
ground state or the simplest metastable states. The sta-
tistical element in the pattern selection of realistic speci-
mens is absent in such analyses. A statistical element
can, of course, be supplied in a computational treatment,
but it is not easy to obtain qualitative insight in this way.
Here we propose that relatively trivial symbolic dynam-
ics, in the spirit of the BTW proposal, can adequately
mimic a real situation. We chose as a prime example the
case of a so-called “head-on”” domain wall such as is
found in a recording tape. The wall separates two re-
gions, magnetized equally and oppositely along the
length of the tape. The tape may be either a continuous
film with easy magnetization direction along the tape, or

it may consist of elongated magnetic particles, with long
axes aligned parallel to the tape. For simplicity consider
first an unphysical “tape” in the form of a thick slab.
Continuity of the magnetic flux b requires that the field
h) > on the two sides obey h| —4mm =h,+4mm, so that
hy—h,=8mm, where m, in the case of the continuous
film, is the saturation magnetization M, and, in the par-
ticulate case, is fM, where f (< 1) is the volume frac-
tion occupied by the particles. We can choose h,=—h,
=h=4zm, and note that on each side, the field 4 op-
poses the magnetization direction. In the case of the
continuous medium, the straight perpendicular wall is
stable only if kM > 4nM, where kM is the anisotropy
field of the material. In the particulate case, the
effective k equals N7, the transverse demagnetizing fac-
tor of the elongated particles, and the stability condition
for the straight vertical wall is then Ny > 4xnf. (Of
course, f must not be so close to unity that exchange
forces between neighboring particles become effective.)
For long cylinders N7 is 2n (the case assumed from
hereon), and so the straight wall is unstable for fill fac-
tors between 0.5 and 1. On the other hand, neglecting
domain rotation (see remarks at end), a straight wall, in-
clined at angle 6., =arcsin(2f) ~' to the tape direction,
will be marginally stable for 0.5 < f < 1. However, the
lowest-energy state is obviously one with 6 =0, at least in
the particulate case where exchange is absent. For the
continuous film, with exchange neglected, and x < 4nr,
we have 0., =arcsin(x/4r), but the lowest state still has
60=0. When exchange is taken into account in some
crude form (for example, exchange energy directly pro-
portional to the total wall area, an approximation valid if
the general scale of the zigzag is much larger than a
domain-wall thickness), the lowest-energy state has a
finite 0, the tape being much longer than it is wide.
However, 0, in that case, too, is larger than that finite
6. In the actual physical tape, the discontinuity is a line
charge, and the magnetic fields are perpendicular to the
line, drop off like 1/distance from the line, and, as in the
case of the slab, oppose the magnetization direction
everywhere. Hence the same reasoning as for the slab
continues to apply. Once again neglecting the domain
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rotation, the critical angle is now approximately 6
=arcsin(a/2fA), where a is of the order of the interpar-
ticle spacing, and A is the thickness of the film. For the
continuous thin film, 1/2f is replaced by «x/4x, and a is of
the order of a domain-wall thickness. This problem has
in the past been considered in a kind of energy-balance
model by Freiser. %>

Suppose that a perfect recording head initially imposes
a straight vertical wall, and conditions are such that this
wall is unstable. The wall will collapse, but will not
reach the lowest-energy state. Instead, it settles into a
zigzag pattern, where the predominant slope of the teeth
is tan(6.,). First, consider this problem on the basis of
traditional micromagnetics of a continuous film. Let
H=Vy denote the magnetic field, and m the magnetiza-
tion (constrained to the x-y plane of the tape). Then,
since the divergence of the total flux vanishes,

Viy=—4z(dm,/9x+0dm,/dy) . (n

Let E4=— 3 (xym2+x,m?) be the anisotropy energy
per unit volume. Then, the effective field acting on m
has components #, =H,+xm,, #,=H,+x,m,. For
stability, m must point along %, and since the saturation
magnetization M of the m must be constant, we have
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FIG. 1. Integral I as a function of angle 6 for different u
and 8, where u =£&/(Jx)) /2, §=2A/&, and & is the period of the
zigzag wall. (a) Here the parameters give minimum / when 8
is about 1.3 (J and/or x small). (b) For these parameters a
straight wall at right angles to the tape occurs (J and/or x
large). u and & are dimensionless. In our units M2, x;M?2, and
J(VM)? are energies per unit volume. Thus J has the dimen-
sions of (length) 2.

(with #=|H|)
my =M% ,/# and m,=M%,/F . )

It is easily verified that Egs. (1) and (2) are the Euler-
Lagrange equations obtained by extremizing the expres-
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FIG. 2. (a) Experimental zigzag wall (taken from Ref. 7).
(b) Histogram of slopes, which is obtained by digitizing (a).
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sion (with A the film thickness)

f%(Vv/)zdxdydz+f[47r7{M—27rEA]dxdyA, 3)

with respect to y and m. Further, for sufficiently coarse
zigzag patterns, exchange may be accounted for by add-
ing (Jx;)'?M?AL to Eq. (3), where L is the total length
of wall, and extremizing the sum. Then, at the end of
the calculation, x; is allowed to go to zero. A zigzag tri-
al solution, with angle and wavelength of that shape as
Ritz parameters, gives the results shown in Fig. 1. It is
seen that the smaller J, the more nearly both 6 and the
wavelength approach zero, as expected.

Figure 2(a) shows experimental zigzag wall sections of
a continuous-film tape,®’ taken from Ref. 7, and Fig.
2(b) is the histogram of slopes obtained by digitizing
Fig. 2(a). To arrive at this shape by purely variational
means would require the use of large numbers of Ritz
parameters to determine the many possible shapes that
render the integral (3), plus the exchange term, station-
ary and locally stable.

Instead, to produce the “noisy” zigzag observed, we
use the following algorithm designed to move the pattern
from an unstable (x <4z or f>0.5) straight vertical
wall to a marginally stable configuration.

We divide the vertical wall into a large number of
small segments, and refer to the magnetic moment on
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FIG. 3. Wall pattern and histogram of slopes when sc =1.2
based on model without exchange.
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each side of such a segment as a “spin.” Starting with
the unstable wall, flip one of each pair of opposing spins
whose heads meet at the wall, choosing the one on the
right or on the left totally randomly. The wall has now
assumed a random zigzag shape denoted by y =y (n,1),
where y(n,1) is the new coordinate of the head of the
nth spin, measured from its original position along the
wall as zero. Next, process the pair of spins whose heads
meet at the point (n,y(n,1)) according to the following
rule: Let

ly(n+1,1)—y(n,1)|?
1+ |y(r+1,1) =y, 1)|?

ly(n—1,1)—y(n,1)|?
1+ |y(n—1,1)—y,1)|*°

If s(n,1) < scit, then flip one of them, which of the two
being decided at random. The new domain wall is denot-
ed by y(n,2). Next, update the system using the same
rule. At the (m+1)st update, flip one of the spins
whose heads meet at (n,y(n,m)) if s(n,m) > scq; oth-
erwise leave that pair alone. Eventually, the pattern at-
tains a shape that changes no further. The quantity
p =sciv—s(n,m) is a crude imitation of the net field due
to the magnetic surface charge, minus the anisotropy
field. Flipping occurs only if p > 0. A more refined al-
gorithm would employ for s a weighted average slope

s(n,1)=
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FIG. 4. Wall pattern and histogram of slopes when scric =1.2
based on model with exchange taken into account.
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FIG. 5. Plot of “response” of settled pattern to a small per-
turbation. (a) and (b) correspond to models with 20 and 100
cells, respectively.

over greater length of the pattern.

Figure 3 shows the settled pattern using our algorithm
for the case st =1.2, and the corresponding histogram
of the slope p, for zero exchange. Figure 4 shows these
results with exchange incorporated in the algorithm in
the form of diminished probability of flips that increase

the total wall length.

We also Fourier analyzed both the experimental and
“theoretical” patterns, and found a white spectrum in ei-
ther case [of course, only up to wave numbers equal to
1/(lattice spacing)].

Figure 5 shows the “response” to a local deviation
from a settled pattern. For all different initial patterns
examined, the log-log plot of the number of cases need-
ing a given number of steps to resettle versus that num-
ber of steps is a straight line of slope approximately 1.15,
whether exchange is included or not. Also, the slope de-
pends only weakly on the nature of the initial deviation.
No appreciable change is found between results for 20
and 100 (or even 300) cells. The matter of finite-size
scaling is still under study. We have also examined hys-
teretic effects by modifying the algorithm to allow for a
net applied field. These results will be discussed in a fu-
ture submission. Finally, domain rotation is neglected
here, although exact numerical simulations show that it
causes the magnetization to deviate somewhat from the
uniform head-on configuration assumed here, particular-
ly near the vertices of the zigzag. This will change the
form of 6., but not our algorithm. We feel that this
has little qualitative effect on the results.
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