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%'e examine bosonic zero modes of vortices formed in the gauge breaking G H. For non-Abelian
G, zero modes are generic. Their solutions depend on global symmetry structure. Vortices render the
embedding H&G space dependent, with a dynamically determined subgroup H single valued. They
Aharonov-Bohm scatter gauge bosons associated with multivalued generators. Alice strings (H O(2),
H Z2] attract charges and scatter SO(2) "photons, "

and a two-string system has zero modes with unlo-
calizable "Cheshire" charge. The resulting superconductivity has novel electrodynamics.

PACS numbers: 11.17.+y, 98.80.Cq

Vortices, line defects containing gauge Aux, occur
generically in many theories, both in condensed-matter

systems and as cosmic strings in grand unified theories.
Such solitons are usually treated as classical back-

grounds; however, in their interactions with quantum

fields it is essential to consider the possible multivalued-

ness of unbroken symmetries, as well as any massless ex-
citations ("zero modes") of the solitons. Multivalued

symmetries lead to Aharonov-Bohm scattering of gauge
bosons by vortices, while zero modes can induce such

dramatic effects as cosmic-string superconductivity and

baryon-number violation. Further, the relationship be-

tween the original theory and the induced lo~er-
dimensional field theory describing the zero modes is in-

teresting in its own right. In this paper we summarize

the results of our investigation into the symmetries and

zero modes of non-Abelian vortices. A more detailed ac-
count will be published elsewhere.

0) Global symmetries. —Consider a gauge group G
broken to a subgroup H by a condensate (P). When the
vacuum manifold G/H has a nontrivial fundamental

group stable vortices can form, with (p) winding at spa-

tial infinity. These strings can be characterized by the
Wilson-line integral

Now consider the possibility, first noticed by

Schwarz, that the local unbroken symmetry group H
cannot be globally extended, and that H is the subgroup

of globally well-defined symmetries (as for monopoles ).
To illustrate this, consider a string with given U(2tr)
6 H. Since the Higgs condensate winds via (1.2), the

embedding of H in G changes as 8 varies, yielding a fam-

ily of different, but isomorphic subgroups H(8). At
8=0 choose a basis [S,(0)j for the Lie algebra 2(H) of
H, where a 1, . . . , dim(H) and trS, Sb =b,b The.
Lie-algebra elements S,(8) that generate the local H(8)
are given by parallel transport:

s.(e) -U(e)s. (o)U-'(e).

They generate a globally well-defined symmetry group

only if they are all single valued; however, in general,

S, (2tr ) =U(2tr) S,(0)U ' (2tr)

= R, b(U(2 t)r) Sb( 0) .

By a basis change on 2(H), R,b can be diagonalized:

U(2tr)s, (0)U '(2n) =k, (U(2tr))S, (0) (no sum),

(1.S)

U(8) =P exp A. dl
E~ 0

at infinite radius. This generates the condensate winding
at spatial infinity:

where k, =exp(2trig, ). Thus a globally well-defined

symmetry group H of our string is generated by the

k, = + 1 subalgebra. In terms of group elements, H is

just the centralizer of U(2tt) within H:

(y(e)) =U(e)(y(0)) . (1.2) H = {h E H
~
[U(2tr), h] =ol . (1.6)

Thus U(2tr) =h E H, where H is the little group of the
Higgs field (p(0)), since (p) must be single valued. The
vortices that can form in this breaking are therefore
specified by the possible values of U(2tt) —the elements
of H. Note that this classification is finer than specifying
the topological class of the string, i.e., its element of
tt( (G/H)

This is a nontopological criterion —an element of the

homotopy group tv&(G/H) only tells us the disconnected

component of H to which U(2tr) belongs, leaving many

possible U(2tt) with different groups H.
To illustrate this, consider G =SO(6) with a Higgs

field p transforming as the 20 (a symmetric, traceless,
6x6 matrix, so &p) g(p)g ', with g in the fundamen-
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tal). If (p) acquires the vacuum expectation value

v diag(1, —
1 ), where the power denotes the multiplici-

ty of the entry, then this condensate leaves unbroken an

SO(3)XSO(3) subgroup of SO(6) and a discrete Z2

transformation generated by g[ = —I6. So the complete
little group of (p) is H =SO(3) & SO(3) && Z2. Here
tt~(G/H) =Zz, so topologically stable strings can form,
with U(2n) an element of the disconnected component of
H. Consider the following candidates for U(2z): (1) g~,
(2) gz =diag(1, —

1 ), and (3) g3 = —R ~z(P), with

R~2(P) a rotation through P in the 1-2 plane, mediating
between case (1) and case (2). Note that only g~ com-
mutes with all SO(3)XSO(3) transformations, so the
true, globally defined, unbroken symmetry group H in

the presence of such a Zz string depends on our choice:
(1) If U(2z) g~, the centralizer of U(2z) is all of
H SO(3) XSO(3) XZz, and this is the globally defined

symmetry group. (2) If U(2x) g2, H =SO(2) )2
X SO(3) &&Z2, generators T~3 and T23 of rotations in the
1-3 and 2-3 plane are double valued. (3) More general-

ly, if U(2tt) -g3, for Pe0 (mod 2x), H =SO(2) ~2

XSO(3)xZ2, generators (I/J2)(T[3~iT23) are mul-

tivalued, acquiring the phase exp(T-iP) in circling the
string.

These strings, although characterized by total flux

within the same homotopy class, lead to different global-

ly defined symmetry groups H. Which possibility is real-
ized in a given model is a dynamical question, depending
on details of the interactions.

(2) Zero mode excit-ations Zero.—modes exist when a
soliton is not invariant under a continuous unbroken

symmetry of the Lagrangian. Using this criterion most
strings have zero modes since the flux in the core is gen-
erally not invariant under H rotations. Indeed, genera-
tors of H but not H always lead to nontrivial rotations.

We now construct the zero modes. Consider the La-
grangian

X = —,
' trF„,F""+—,

' (D„y) 'D"y —V(y), (2. 1)

D"Dpy = —2
2 P for P,

V

a(f y [')

D"F„,=gT'(D, y) "T'y for A„.

(2.2)

(2.3)

They have as one solution a string along the z axis:

A, =A, =0, A, =A, (r, e), A. =A,(r, e),

y =w(e) &y(r)),

(2.4)

(2.S)

where (p(r)) approaches 0 at the origin and constant at
infinity, W(8) goes to U(8) at infinity, and A„,Ae have

where A„=A„'T', D„g=i1„$—A„p, and T' is an anti-
Hermitian generator in the p representation with
tr(T' Tb) =b'b. p condenses, breaking the gauge group
G (locally) to H. The field equations are

the boundary conditions

A, =O, 8~=0 for r =0,

A, 0, Ag —(n/r) T for r

(2.6)

(2.7)

Condition (2.6) excludes singular charge or current dis-
tributions at the origin; condition (2.7) specifies the
winding number n and a generator T 6 2(G).

Generators S, acting nontrivially on this flux conden-
sate (or alternatively, on some noninvariant scalar con-
densate) induce zero modes whose form we seek. Since
we want solutions whose energies vanish when there is no

t and z dependence, a natural prescription is (z, t) modu-
lation of a gauge transformation in the x-y plane:

y = ny, A„=nA„n '+ b„'(t);n) n (2.S)

y=y, A„=A„—b„'(8.n)n (2.9)

in which it is clear that the energies can depend only on
the z and t derivatives of n. We solve for n in the linear
approximation: For n generated by to(x, t) E Q(H), we
retain only terms linear in to, approximating B„n n
by 8„to. Thus, under the Ansatz (2.9), the string's field

strength is augmented by bF,p =0, bF;, = —D; (B,to),
and bF;, 0, where D;to tI;to —[A;,co]. Linearizing the

gauge field equations (2.3), we obtain

D'D;B,to= —gT'(B, top) T'p for v=a, (2.10)

D;8'8, to=0 for v=i, (2.»)
which, as linear equations, can be solved by the separa-
tion of variables to =rt(z, t)a(r, e), where a(r, 8) is Lie-
algebra valued. For (2.11) this gives [since physical ex-
citations have D; a(r, e)~0]

r)'B.rt(z, t) -0, (2.12)

so we have massless modes propagating along the string
at the speed of light. These modes automatically obey
Eq. (2.2) for p.

The (r, e) dependence of the zero modes is determined
by (2.10), giving

D'D; a = —g T'(aP) T'P . (2.13)

Such a Laplace-type equation always gives a unique
solution when a single-valued a(r, e) is specified at spa-
tial infinity. To specify the asymptotic behavior of
a(r, e), we consider Eq. (2.13) as r ~. Here the
right-hand side vanishes and A„assumes the form (2.7),
so D,a B,a and (1/r) Doa = (1/r) Bea+ (n/r) [T,a].
Thus we may write (2.13) asymptotically as

(I/r)a„(ra„a)+ (1/r )boa =0, (2.14)

where n n(x, t) C H and i,j label x,y while a,p label
z, t Th.us Ao and A, remain zero while A„and A~ are
gauge transformed. Gauge transforming by n ' gives
the alternative formulation
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h, ga, =isa„s E IR . (2.15)

The explicit solution is

a, (aa, 8) =exp(is8)exp( —n8T) a, (00,0)exp(n8T) .

Recalling the conjugated generators of H, S,(8)

where h, (), defined by Aea =(1ea+n [T,a], has no r depen-
dence. Therefore, h, ~ commutes with O'D; at spatial
infinity and we may expand a in h~ eigenstates:

=exp( —n8T)S, (0)exp(n8T), we see that for a propor-
tional to a single-valued generator S,(8), s E Z. Howev-
er, for a proportional to a multivalued generator with
S(2)r) =exp(2)rig)S(0), single valuedness of a implies
thats e Z —(.

By (2.14), the asymptotic r dependence of a, is r —'
for nonzero s and lnr+const for s=0. We now multiply
the full zero-mode equation (2.13) for such an eigenstate
by a„ integrate over (r, 8), and take the trace to obtain
(after integrating by parts)

t' 2x t 2z
tr d8a, r8„a, „0= rdrd8 tr(D, a, ) (D,a, )+ 2

tr(Dea, ) (Dea, )+ (a, ((1( ~0, (2.16)

where on the left-hand side we have used the behavior
(2.7) of A, at r =0 and r ~ to replace D, by 8,.
Since for a nontrivial zero mode the right-hand side of
(2.16) is strictly positive, and a is bounded at the origin,
the zero mode must induce a positive surface term at
spatial infinity. Therefore a must always contain some
admixture of the radially diverging [i.e., -r ~ ~ or
-ln(r)] solution of (2.13). The energy of the mode is

r R
E=„rdrtr(bF;, ) (BF;,)Jp

) R
rdr(8, rt) tr(D;a) (D;a) (R aa) . (2.17)

The (8,rt) factor is just k for a zero mode of z wave-

length k, so

g -2R 21& I for g + 0

E-k in' for s=0.
(2.18)

Clearly for fixed R the energy vanishes in the long-
wavelength limit, as expected for zero modes. However,
for fixed k the energy diverges as R aa. Note that the
mildest energy divergence is the logarithmic one for s =0
solutions, which only exist for S, 6 Q(H). This logarith-
mic divergence is not surprising; it arises whenever
charged particles travel at the speed of light, due to
Lorentz contraction of the field into a pancake with

E,—1/r. Conversely, any solution associated with a gen-
erator in H but not H has polynomially divergent energy.
Thus the energy of these modes depends critically and in

a very unusual way upon the large-scale structure of the
string.

(3) Alice electrodynamics We have .n—ow described
the global nonexistence of locally valid symmetries as a
formal possibility that generically arises when H is non-
Abelian. Physically this induces difTerent amplitudes for
the Aharonov-Bohm scattering of particles within a sin-

gle H multiplet off' the string. This occurs even when H
is discrete. More dramatic consequences arise when H
contains a continuous part. We now consider a simple
example of this type, the Alice string.

The Alice string occurs in a model where SO(3) (gen-
erated by T1, T2 T3 with trT, Tb =2b,b) is broken to

+ interactions. (3.1)

Thus there is one massless gauge particle (A„' )) associ-
ated with the locally unbroken U(1) symmetry, and two
massive ones associated with the broken generators of
SO(3). Note that S2, S), A, and A are all double-
valued functions of 8, so that 2„ is single valued. For a
U(1)-charged particle in the presence of the string, it
can be shown that (on the first Riemann sheet) A„
obeys the Maxwell equations for the field of a charged
particle at x =R, y =z =0, with the branch cut along the

y =0, x (0 plane replaced by conducting-plate bound-

ary conditions. A real conducting plate induces an oppo-
site charge on the plate, attracting the original particle.
Since the U(1) field for the Alice string is identical,
charge is attracted to the string [property (1) above].

Property (2) is seen by expanding an incoming plane
wave of 8„' in solutions of the equations of motion.

O(2) by a Higgs (1) transforming as a 5 with ((f)(8=0))
=

U diag(1, 1, —2). At 8 =0 the unbroken O(2) consists
of a U(I) generated by T& and a discrete element X cor-
responding to rotation by z about the x axis. For a
string with U(2)r) X the Higgs condensate becomes
angle dependent, (p(r, 8)) = exp (8T1/2) (1))(r, 0))
xexp( 8T1/2), w—ith the unbroken U(1) generated by
S)(8), where S,(8) =exp(8T)/2) T, exp( —8T1/2).
Thus S2(8) and S)(8) are double valued, and there is no
globally defined unbroken continuous symmetry, only a
double-valued U(1) generated by S3(8). This leads to
three striking consequences: (1) Charged particles are
attracted to the string. (2) The massive S2 gauge boson
and the massless "photon" associated with Si both un-
dergo Aharonov-Bohm scattering off the string. (3) A
pair of strings can carry a charged zero mode, but the
charge cannot be localized either to the string or to the
space between them ("Cheshire charge").

We now briefly explain these features. A detailed
treatment will be presented elsewhere. Writing A„
=A„' S„etc., we find that outside the string core the
Lagrangian is

1 F(a)F(a)p +9 2U2(A (1)A (l)p+A (2)A (2)p)
4 pv g Q) P

1634



VOLUME 64, NUMBER 14 PHYSICAL REVIEW LETTERS 2 APRiL 1990

The components of A ' obey the Klein-Gordon equa-

tion, whose solutions take the form J„(kr)exp(iw8). The
strength of Aharonov-Bohm scattering is determined by
the order w of the Bessel function J„, specifically
era:sin (wn). For the single-valued field A„', w E Z, so
there is no Aharonov-Bohm scattering. However, for the
other two bosons (including the photon A„) w E I+ —,',
to obtain double-valued functions, so there is maximal

scattering.
To discuss property (3) for a pair of strings at (x,y)
(0,0) and (D,O) we use singular gauge, in which the

background field 8„ is zero except on the plane joining
the two strings. This plane is then the branch cut, and

S3(x,y) and the electric field E; both change sign on

crossing it [Fo;(x,y) E, (x,y)S3(x,y)]. Outside the

string cores, the zero-mode equation of motion (2.13)
yields the source-free Gauss law, r);E; =0. E; must

change sign on circling one string, but is single valued on

circling both strings. Thus there is a charged s=O zero
mode for the two-string system, for which E,(r, e) =Q/r
for large r. Gaussian surfaces enclosing no string con-
tain no net charge; however, no meaning can be assigned

to those enclosing a single string because on them E; is

double valued. Thus we cannot localize the charge to a
single string nor to the intermediate region using Gauss-
ian surfaces. To obtain more information we could cal-
culate E;(x,y). It can be shown, by reflection symmetry
in the x and y axes, that the branch cut is equivalent to a
conducting plate with charge Q. Solving the electrostat-
ic equation with this boundary condition reveals that
Er(x, 0) g/[x(D —x)l '/ for 0 & x & D. So as we

take one string to infinity the charge is not localized near
either string.

Thus although the generic non-Abelian vortex pair (or
loop) necessarily supports a form of superconductivity, in

general the associated electrodynamics will be quite
different from that of a superconducting wire.

The principal physical relevance of zero modes lies in

the superconductivity that they generate, ' and, further,
their ability to absorb charges onto the string. ' Indeed,
we may understand the necessary existence of some zero
modes by considering a loop of string with flux U(2m):
All the symmetries H can then be defined globally at

infinity, along with the associated charges. However, if a
particle slowly threads the loop it returns conjugated by
U(2z), and this generally alters the quantum numbers
associated with multivalued generators. Since these are
nevertheless good quantum numbers, there must be low-

energy excitations of the string capable of absorbing the
deficit. Further, this argument shows that there can be
magnetically charged excitations of vortex loops. For in-

stance, in the Alice-string example we could choose to
take a monopole through the loop. These magnetic
modes are discussed in Ref. 3.

The inelastic-scattering process excites a finite-energy
superposition of modes on the string, whose charge per
unit length drops to zero as their electric field spreads
out from the string. This enables charge to be deposited
at an energy cost that is, in principle, arbitrarily small,
although there may exist energy barriers at intermediate
stages. The details of this process are currently under in-

vestigation.
After the completion of this work we received a paper

by Preskill and Krauss in which symmetries in the pres-
ence of a string and Cheshire charge are discussed.
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