
VOLUME 64, NUMBER 14 PHYSICAL REVIEW LETTERS 2 APRIL 1990

New Exact Solution for the Exterior Gravitational Field of a Spinning Mass
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An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravi-
tational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented.
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To describe correctly the gravitational field of a spin-
ning mass, one needs an exact asymptotically flat solu-
tion of the vacuum Einstein equations possessing an arbi-
trary multipole structure provided by two independent
infinite sets of arbitrary parameters. Neither the well-

known Kerr metric' nor recently found metrics with
the Schwarzschild static limit solve this problem because
of a special relationship between their multipole mo-
ments (see, e.g. , Ref. 4). Another stationary solution ob-
tained by Quevedo and Mashhoon, though it takes
into account static deformations of a star, does not de-
scribe all possible deformations due to rotation. In this
Letter, we present in an explicit and very compact form
a metric which contains two infinite, yet dependent, sets
of arbitrary parameters a„and P„, and accounts for both

static and stationary deformations of an axisymmetric
mass, its angular momentum multipole moments (except
for the total angular momentum) being dependent upon
the choice of the mass-multipole moments. In the ab-
sence of rotation, our solution reduces to a new general
static axisymmetric asymptotically flat vacuum metric in

which the gravitational multipoles are superimposed
upon the Schwarzschild solution.

As is known, the general stationary axisymmetric vac-
uum problem reduces to the Ernst equation

(e+ e*)ae =2(Ve) '

for a complex Ernst potential e which determines the
functions f, y, and to in the line element

=k f '[e (x —y )[dx /(x —1)+dy /(I —
y )]+(x —l)(1 —

y )dp ] f(dt —todp)— (2)

where k is a real constant and (x,y) are prolate spheroidal coordinates.
Using the nonlinear superposition technique ' we were able to derive the following solution of Eq. (1) and the cor-

responding metric functions f, y, and co:

e =A /A ~, f=2p(x —1)exp(2tlr)A/B,

exp(2y) =exp(2y')9/(x —y), to=2kq+kqp '( —4y+p —C/3),

3+. = (p+1)(x T-1)[(x—y) Tiq(x -t 1)(1 ~y)(x —1)exp(2a)]exp(~ tlt)

+iq(x+ 1)[(x —y) +iq(x+ 1)(1+y)(x —l)exp(2a)]exp(+ ilt),

W =(x —y)' —q'(1 —y')(x' —1)'exp(4a),

B= (p+1)(x+1)z[(x—y) +q (x+1) (1 —y) (x —I) exp(4a)]

(3)

+(p —1)(x—1) [(x —y) +q (x —1) (1+y) (x —1) exp(4a)]exp(4Vr)

+4q (x —1) (x+y) exp(2y+2a),
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where p and q are real constants subject to p —
q =1, while the functions y, y', a, and p are given by the expressions

y= g (a„+qP„)(x+y) " 'P„((xy+1)/(x+y)),
n 1

(4)

a= g g (a„+qP„)2 " [2'(x —y)(x+y) ' 'PI —1],
n ll 0

y'= —, ln[(x' —1)/(x' —y')]

(s)

OO n

+ P (a„+qP„) (x+y) " 'P„++12 " ' g [2'(x —y)(x+y) ' 'Pl —1]
n 1 I 0

+ P (a„,+qp„, ) (a„+qP„)(m+1) (n+ I) (P~+ iP„+1 PmP—„)/(m+ n+2)(x+y)
m, n l

p=2 g (a„+qP„)[(xy+1)(x+y) 'P„—P„i] /( x+-y)"+'.
n 1

(7)

Here a„and P„are real constants; P„are the Legendre
polynomials of the first kind, all of them being of the ar-
gument (xy+1)/(x+y). Note, that the summation in

the formulas (4)-(7) can be cut ofl' at any desired value
of n.

Relations (3)-(7) fully determine the new stationary
metric. By calculating its Geroch-Hansen multipole mo-
ments' ' it is straightforward to see that the metric is

asymptotically flat (the angular momentum monopole
moment is equal to zero), and its total mass M, angular
momentum J, and quadrupole moment Q are given by

M=p, J=q(p +2)/p,

0 = I q' (~2+—qP2)/-I

(8)

(k =1 and ai =Pi =0 are assumed for simplicity). In
general, the mass-multipole moments M; and the angu-
lar momentum multipole moments J; contain the param-
eters a;, a, 1, . . . and P;,P; i, . . . , which define, respec-
tively, the static and stationary deformations of an ax-
isymmetric mass. Indeed, transition to the static case in

our solution is achieved by putting q =0 in (3)-(6); then
the resulting function

f= (x-1)(x+1)-'
v

xexp g a„(x+y) " 'P„((xy+1)/(x+y)) (9)
n ]

together with )
'

arising from (6) fully determine the new

static vacuum general axisymmetric solution describing a
nonrotating mass with the entire set of arbitrary relativ-
istic multipole moments, a„defining up to a constant
factor the 2"-pole Newtonian moment. On the other
hand, when a„=O, P„eO, the relations (3)-(7) deter-
mine stationary solutions with the Schwarzschild static
limit, so that P„appear and survive only in a stationary
case, defining the deformations of a mass due to rotation.
It should be noted, however, that since the parameters a„
and P„, separating static deformations of a mass from
those due to rotation, are introduced into the solution by

S =8aM (p+1)p 'exp —g (a„+qP„)/2"
n ]

(10)

and it reduces, at a„=P„=O, to the expression obtained
for the solution in Ref. 3, and at q =0, a„=O to that for
the Schwarzschild metric. The reported solution is alge-
braically general; however, it degenerates to Petrov type
D at the symmetry axis (y = ~ 1) and at q =a„=0. The
formulas obtained are easy for practical use: One only
needs to choose the required number of arbitrary mass-
multipole moments, to fix the index n in the relations
(4)-(7), and lastly to substitute y, a, y', and p into (3).
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The simplest possible stationary metric contained in
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