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Thermodynamics of Irregular Scattering
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lt is pointed out that scaling (multifractal) properties of chaotic repellers underlying irregular scatter-
ing in two-degree-of-freedom systems can be deduced by measuring simple length scales generated
hierarchically along a straight line taken far away from the interaction region, or on the Poincare plane,
and analyzing them in the spirit of the thermodynamic formalism. The method is easier to apply than a
periodic-orbit analysis,

PACS numbers: 05.45.+b, 03.20.+i, 05.90.+m

It has recently been recognized that in the realm of
scattering processes regular scattering is exceptional and
irregular, or chaotic, scattering' '' is typical, in a way
very analogous to that of integrability and nonintegrabil-
ity in bounded Hamiltonian systems. ' The essential
feature of irregular scattering is a clustering of initial
conditions that leads to a delay in the interaction region,
including a fractal set that leads to complete asymptotic
trapping (for a review, see Ref. 7). The trajectories that
come close to the trapped ones exhibit, on finite time
scales, chaotic behavior. It has been pointed out" that
the phenomenon can be well understood as a special case
of transient chaos. ' ' The set of all bounded periodic
orbits plays the role of a chaotic repeller. ' An adequate
description of such scattering processes must therefore
also include concepts worked out for dynamical systems.
Our aim here is to illustrate how multifractal or, more
generally, scaling properties of irregular scattering can
be described by means of the so-called thermodynamic
formalism, 's'6 which has been applied so successfully to
one-dimensional chaotic maps.

We shall show that for irregular scattering taking
place in two-degree-of-freedom systems it is sufficient to
consider a straight-line intersection of the stable mani-
folds of the repeller, and the length scales generated on
this one-dimensional subspace completely characterize
chaotic and multifractal features of the process.

As an illustrative example, we shall use the problem of
the scattering oA' three hard disks centered on the ver-
tices of a regular triangle, introduced in Ref. 5, which
has become a standard model of the field. '

Let us start with a few general comments. In scatter-
ing problems with two degrees of freedom, one can al-

ways introduce an area-preserving Poincare map for tra-
jectories having at least one collision with the interaction
region. The coordinates of the map can be chosen to be,
e.g. , the modulus of an angular momentum and an ap-
propriate angle. The elements of the repeller are just the
points on which the map can be iterated arbitrary times
both forward and backward. Each point of a repeller is
expected to be hyperbolic, i.e., possess one-dimensional
stable and unstable rn nifolds. The system is Hamiltoni-

an, and time reversal implies the equivalence of stable
and unstable manifolds. Consequently, the fractal prop-
erties (e.g. , partial dimensions' ) along both stable and
unstable manifolds agree. (In another context, see Ref.
11.) Therefore, in contrast to dissipative cases, it is
sufficient to concentrate now on any of the invariant
manifolds which makes the problem effectively one di-
mensional.

Imagine a generating partition' on a neighborhood S
of the repeller. This is obtained by taking the cross sec-
tion of the nth images and preimages of S, and letting n

go to infinity. The nth image of 5 contains, roughly
speaking, strips which are elongated in the unstable
direction but narrow in the stable one (dotted lines in
Fig. 1). The nth preimage of S also contains strips but
these are elongated in the stable direction. Let el";,
i =1,2, . . . denote the widths of these strips. Although

lo)t ~
I I

FIG. 1. Part of the Poincare map in the three-disk problem
(disk radius -1.0, distance between disks 2J3). b is the angu-
lar momentum (with respect to the symmetry center) of the
particle with unit mass and velocity; a is the direction of veloci-
ty. Dotted and dashed lines denote the third image and preim-
age of neighborhood S which was taken as the region in phase
space from which at least one collision is possible both in the
direct and time-reversed motions. The boxes are elements of
the generating partition covering the repeller; solid lines repre-
sent branches of the stable manifolds of repeller points. The
four intervals exhibited correspond to initial conditions with
fixed a and allow three successive collisions with the disks.
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W(n)~ ~(n)p —pF(p)n
I (2)

where F(P) is the free energy (density). This quantity is

the actual values of E]; depend on the choice of S, the
scaling properties in n do not.

Let us fix a straight line in the Poincare plane
sufficiently far away from the repeller. This intersects
the stable manifolds of the repeller points in a Cantor set
we call C. If trajectories are started out of this line and
the intervals I " are specified from which trajectories do
not leave the neighborhood S up to, at least, n steps, we

obtain a coverage of the Cantor set with a number, say,
N(n) of intervals. Let the length of these intervals be
denoted by I;(", i 1,2, . . . , N(n). The intervals are
practically the intersections of the straight line with the
nth preimage of S; therefore, it is obvious that these
lengths are proportional to the lengths obtained in the
generating partition along the unstable direction: l;(")

Since the stable manifolds extend smoothly to
infinity, the scaling properties of jl;" j do not depend on
the position and direction of the straight line. Conse-
quently, the fractal dimension of C is nothing but the
partial fractal dimension Do' along the unstable direc-
tion of the repeller. In view of reversibility, Dp(') Dp(

Branches of the stable manifolds and a few intervals I;"
on a straight-line intersection are illustrated in Fig. 1 for
the three-disk problem.

It is worth noting that a similar procedure can also be
performed in configurational space. Let us fix, as done
in Ref. 5, a straight line far away from the interaction
region (this corresponds to a line on the Poincare map,
too) and start trajectories from it in a given direction
(with constant velocity). Those which do not leave the
interaction region up to, at least, n collisions start out
from certain intervals I ", whose lengths will be denot-
ed by l " . For n ~, these intervals approach a Can-
tor set C'. A smooth transformation connects these in-

tervals with those obtained on the Poincare map, so the
scaling properties of fl;(" j and fl (")j, and the fractal di-
mension of C and C', are the same. Thus our arguments
explain the observation of Refs. 5 and 6 about the in-

dependence of the fractal dimension of C' from the
choice of the straight line. In what follows, we shall use
the set fl; ")j but keep in mind the equivalence with
[p(n) j

We are now in a position to work out quantitative re-
lations. In the spirit of the thermodynamic formal-
ism, ' ' let us associate with each interval the microstate
of a fictitious spin chain of length n with energy

nE; = —ln(l;" ) .

The quantity l;" ~, where P is a real parameter, the ana-
log of an inverse temperature, plays the role of a
Boltzmann factor. The partition sum is expected to scale
exponentially with n; therefore, we can write for large n

Note that I/)r is just the average lifetime of trapped tra-
jectories. A central result of the thermodynamic formal-
ism says' that the free energy vanishes exactly at the
value of P which agrees with the fractal dimension.
Therefore, the partial fractal dimension Dp ) is deter-
mined by the relation

F(D (I ) ) —0 (4)

The number N(n) of the intervals tells us how many
different trajectories of length n stay inside the interac-
tion region. This number should grow as exp(Kpn),
where Kp can be called the topological entropy of the
scattering process. Consequently,

PF(P) I)) -o = Ko (5)

Let us now turn to metric properties. Among different
invariant measures on the repeller, the most important
one is the so-called natural measure. It can be deter-
mined by letting several trajectories start and concen-
trating on those which are trapped for sufficiently long
time, in the same manner as described for dissipative
cases in Ref. 14. The natural measure possesses a
smooth density on a refining generating partition, as is

the case for hyperbolic systems in general. This means
that considering a strip of finite width along the unstable
direction, the natural measure P;" belonging to a box
which has a size t. t"; in the generating partition is pro-
portional to this size. By taking into account normaliza-
tion, we find

P.{n)
(n)

~ ' Kn (n) Kn/ (n)
(~3 l, l I

&l,i

where in the last equality the fact has been used that the
e's are proportional to the l's. It is essential for what fol-

easy to measure, e.g. , by comparing two partition sums
at subsequent values of n. There are, in general, several
intervals characterized by the same energy value E.
Their number grows exponentially with n, like
exp[S(E)n]. The easiest way to obtain in practice the
entropy function S(E) it to take the Legendre transform
of PF(P): S(E) =PE —PF(P). For our purposes it is
sufficient to know the scaling forms (I) and (2), and we

shall not use any longer the analogy with spin chains.
F(P) and S(E) will be considered as characteristics of
the repeller which, in principle, can also be determined in

classical experiments.
The free energy or the entropy contains relevant infor-

mation concerning the scaling properties of the system.
To illustrate this, we first consider quantities that are in-

dependent of an invariant measure. The escape rate )r

describes the exponential decay of the number of trapped
trajectories with n. Since the total length of the intervals
defined above must, therefore, decrease as exp( —xn),
we immediately find

(3)
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lows that a connection has thus been found between

length scales I;" and natural measures P; ". Being in-

terested first in the scaling properties along the unstable

direction, we introduce a partial crowding index' al by

0.8 0.4

p (n) I (n)a,
l

(7)

Using (1) and (6), one immediately finds P "l

-exp( Ea—in) -exp[(x —E)n], i.e.,

al =1 —x/E (8)

for each interval with energy E. Since this relation is

unique, the number of intervals with a given ai is the

same as that with E x'/(I —ai ), i.e., exp[S(E)n].
Furthermore, using the language of the f(a) formal-

f 1 (&I )
ism, ' this number should behave as I ' ', where I is

the interval length and where fi(ai) is the multifractal

spectrum along the unstable direction, i.e., the fractal di-

mension of intervals with crowding index al. But be-

cause of (1), I exp( —En); therefore, S(E) and

Ef|(ai) are equal. Thus, fi can be expressed in terms

of the entropy function as

f ( )
S(E)

E E -~1() -a
(9)

By taking the Legendre transform of fi, we find an im-

plicit equation for Dq' .

PF(ij) IP-, -(, -l)D (10)

Note that Eq. (10) is the extension of (4). Since stable

and unstable directions are equivalent Dq Dq . The
global dimension D~ appears as a sum of the partial
ones: '

D =2D")

q[F(q) —F(1)]
q

—
1

(12)

providing an extension of relation (5). The derivative of
PF(P) at P=l is just the averaged Lyapunov exponent
on the repeller.

We applied the method presented here to the three-
disk problem at the parameter value used in Ref. 5. The
free energy was determined by measuring the length
scales [l;"] at generations n =9, 10, 11 numerically. The
convergence was very fast, and an accuracy of six digits
has been reached by n =11. From relations (3) and (4),
tv=1.464 717(4) and Do' =0.320781(1) were obtained,
much more accurately than in Ref. 5. The function

PF(P) vs P has at this parameter value a weak curvature
only. Therefore, we present rather the entropy function
S(E) [Fig. 2(a)]. The multifractal spectrum was evalu-

The quantity P;" is also proportional to the path
probability of a given type of trajectories. Let us recall
that the sum pP;l"lv should scale as exp[(1 q)Kqn]—
from which we obtain for the generalized entropies K~

0.0
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0.0
0.25

I

0.35
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FIG. 2. The thermodynamics of the three-disk problem
(disk radius 0.7). (a) The entropy function S(E) obtained as
the Legendre transform of PF(/j). The extremal energy values
are Ei 2.050104 and E — 2.232301. (b) The partial mul-

tifractal spectrum fi (al ).

ated via relation (9) [Fig. 2(b)l, with a relative error of
10-4.

As an independent check, we performed the periodic-
orbit analysis of the three-disk problem. All cycles of
length n up to n 15 have been determined by using the
PIM triple method of Ref. 21 (where PIM denotes prop-
er interior maximum) which could be improved in our
case by the complete knowledge of the allowed symbol
sequences. From the (largest) eigenvalues of these or-
bits, the multifractal spectra can be deduced via the for-
malism described in Ref. 11. We have found an agree-
ment better than 0.2% with the data obtained from the
length scales. The amount of computational efforts is,
however, considerably increased not only because of the
search for the cycles but also because of slower conver-
gence and stronger finite-size effects. Recently, a new

approach has been worked out based on the cycle expan-
sion of the zeta function' ' which provides fast con-
vergence even for short cycles. The convergence seems,
however, to be nonuniform in P. The method requires
determining zeros of a P-dependent polynomial of order
equal to the largest cycle length used. At intermediate P
values (P-6 at n =6), we found that roots tend to accu-
mulate making numerics unreliable. Simultaneously, the
root having been relevant for smaller P values disap-
peared. This disturbing region can be shifted toward
large values by increasing the cycle length. Thus, a reli-
able evaluation of F(P) in a region, say, i P i

( 15, also
requires considerable computational effort by using the
cycle expansion of the zeta function.

We emphasize that the method presented is not at all
restricted to the three-disk problem. It has been shown
that a topologically similar repeller exists also in scatter-
ing processes defined by smooth potentials. The mea-
surement of length scales and their analysis in the spirit
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of the thermodynamic formalism as described above has
also recently been applied to such cases. %e recall
that in practical, e.g. , experimental, applications the
Poincare map need not be constructed. One might work
with the scales fl "l generated on a straight line in the
configurational space as explained in the text. Finally, it
is worth mentioning that in smooth-potential cases an in-

teresting new phenomenon can occur. At energy values
where quasiperiodic trajectories are present, the "sticki-
ness" of the tori may lead to a phase transition in the
scaling properties, just like in bounded Hamiltonian sys-
tems.
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