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We study a general Bak-Tang-Wiesenfeld—type automaton model of self-organized criticality in which
the toppling conditions depend on local height, but not on its gradient. We characterize the critical
state, and determine its entropy for an arbitrary finite lattice in any dimension. The two-point correla-
tion function is shown to satisfy a linear equation. The spectrum of relaxation times describing the ap-

proach to the critical state is also determined exactly.

PACS numbers: 05.40.+j, 05.60.+w, 46.10.+z, 64.60.—i

Recently Bak, Tang, and Wiesenfeld (BTW) have in-
troduced a simple automaton model that captures some
important features of the dynamics of sandpiles.! It
displays the remarkable property that starting from an
arbitrary initial state, its stochastic evolution produces at
long times a unique critical state characterized by
power-law correlations in space and time. This state has
been called the self-organized critical (SOC) state, and
BTW have argued that such models provide a natural
framework to describe diverse phenomena involving dis-
sipative, nonlinear transport in open systems, such as 1/f
noise in electrical networks, distribution of visible matter
in the Universe, earthquakes, etc.>

To determine the critical exponents characterizing the
SOC state, BTW have relied mainly on numerical simu-
lations,! and the mean-field approximation.> More ex-
tensive simulations have been made by Kadanoff et al.*
and Manna and Grassberger.® A directed version of this
problem has been solved exactly by Dhar and
Ramaswamy, ® and its critical exponents are known in all
dimensions. Using some assumptions about compactness
of avalanche clusters, Zhang’ has determined the critical
exponents of the undirected BTW model in all dimen-
sions. For the cluster-size exponent 7 (probability that
adding a particle at random causes exactly n topplings
~n "), he finds that t=2(1—1/d) for 1 =d < . For
d=2, this value disagrees with the numerical estimate
7==1.22 obtained in Ref. 5. Obukhov® has argued that
the avalanche process may be viewed as a branching
self-avoiding walk, and using e-expansion techniques he
finds that the upper critical dimension for the undirected
BTW model is 4, and t=3 for d=4. Hwa and Kar-
dar® have studied the evolution of a nonlinear continuum
model in the presence of noise, which they argue is in the
same universality class as the BTW model with a pre-
ferred direction, but the upper critical dimension (and
also the critical exponents) in this model differs from its
value in the model studied in Ref. 6.

In this Letter, we study the SOC state of a general
BTW-type automaton model on an arbitrary finite set of
sites. We consider the case when the toppling at a site
occurs if the “height” at the site exceeds some locally

prescribed critical value. Our treatment is valid even
when the toppling rules differ from site to site, and for
any dimension of the lattice. In the following, we shall
refer to this model as the Abelian model (AM) to distin-
guish it from other BTW-type models in which the
operators do not satisfy a commutative algebra when the
toppling criteria depend on gradients of height. We
show that in the SOC state of the AM, some stable
configurations are forbidden, but all the allowed con-
figurations occur with equal probability. The number of
allowed configurations is shown to be equal to the deter-
minant of an integer matrix A that specifies the evolution
rules. The two-point correlation functions of the model
are given by the matrix A ~!. We define operators corre-
sponding to adding a particle at different sites and show
that they commute with each other. The algebra of
these operators is used to determine the spectrum of re-
laxation times of the AM.

Definition of the model.—We consider a set of N
sites, labeled by integers 1 to N. To each site i is as-
signed an integer variable z;. The AM is specified by
two rules.

(i) Adding a particle: We select a site at random
(probability of selecting site i being p;, all p;’s not neces-
sarily equal) and increase z; by 1. Other z;’s (j=i) are
unchanged.

(ii) The toppling rule: This is specified in terms of an
N XN integer matrix A, and a set of N threshold values
zic (i=1to N). If any z; > z;, that site topples, and in
the language of sandpiles, some of the particles from the
toppled site drop onto other sites, and some may leave
the system. On toppling at site i,

Zj—>Zj_A,'j, for j=1toN. (1)
The integer matrix A satisfies the conditions

A,‘,‘ > 0, for all i, (2)

A,‘jSO, for alll#_], (3)
and

N
2 A;=0, foralli. (4)
j=1
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These conditions ensure that on toppling at site i, z; must
decrease, z; for j#i cannot decrease, and there is no
creation of particles in the toppling process. Particles
can leave the system, say at the edges; in fact, no steady
state is possible otherwise. We assume in addition that
the matrix A is such that any configuration relaxes to a
stable configuration in a finite number of steps. We do
not assume that the matrix A is symmetrical. The con-
ventional undirected nearest-neighbor BTW model > as
well as its directed and partially directed variants® are
obtainable as special cases of the AM.

Without loss of generality, we can assume that z;, =A;;
for all i. Then, any configuration {z;} in which 1<z
=< A;; is a stable configuration under the toppling rule.
We define N operators a; (i=1 to N) on this space of
stable configurations by requiring that a;C be the stable
configuration obtained by adding a particle at site i to
the configuration C and allowing the system to evolve by
toppling.

Consider an unstable configuration in which two sites
a and B are both critical (i.e., zo > Age and zp> Agp).
Then first toppling a leaves B critical [Eq. (3)], and after
toppling both a and 8 we get a configuration in which z;
decreases by A, +Ag for i=1 to N. This is clearly
symmetrical under exchange of @ and B. Thus we get
the same resulting configuration irrespective of whether
a or B is toppled first. By a repeated use of this argu-
ment, we see that in an avalanche, the same final stable
configuration is reached irrespective of the sequence in
which unstable sites are toppled. Also toppling at an un-
stable site a, and then adding a particle at site B gives
the same result as first adding at 8, and then toppling at
a. From these two properties it follows that for all
configurations C, and all i and j, we get a;a;C =aja;C.
In other words the operators a; commute with each oth-
er:

la;,a;1=0, foralli,j. (5)

Note that in BTW models with toppling condition de-
pending on gradients, the inequality (3) is not satisfied
and the operators g; do not commute.

The commutativity of a’s is the crucial property un-
derlying the tractability of AM. In particular, it implies
that the steady state (the SOC state) of the model can
be characterized very simply.'® From the general theory
of Markov chains, the set of all stable configurations can
be divided into two classes: recurrent and transient. We
define a configuration C to be recurrent, iff there exist
positive integers m; (i=1 to V) such that

a"C=C, foralli. 6)

From Eq. (5), it is easy to see that if C is recurrent then
configurations a;C (i=1 to N) are also recurrent.!' We
denote the set of all recurrent configurations by R. It
follows that R is closed under multiplication by opera-
tors a;. Once our system gets into a recurrent con-
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figuration, it can never get out of & under the Markovi-
an evolution of AM. It follows that all nonrecurrent
configurations are transients, and have zero probability
of occurrence in the SOC state.

For operators a; restricted to domain R, inverses can
be defined. For any configuration C satisfying Eq. (6),
we define

a~'C=a™"'C, foralli=1toN. )

As argued in Ref. 9, the existence of a unique inverse in
the set of recurrent configurations implies that the state
in which all recurrent configurations occur with equal
probability is the invariant state of the Markovian evolu-
tion. We thus have a full characterization of the SOC
state of AM: In it only recurrent configurations have a
nonzero probability of occurrence, and this nonzero
value is the same for all recurrent configurations.

Consider now any configuration C € R, to which we
add A; particles at some site i one after another. Since
z; > 0 in C, after these additions the site will become un-
stable, and topple, in the process adding (—A;;) particles
at all other sites j (j=i). We thus see that the operators
a; (i=1 to N) satisfy the equations

a,-A" =H'aj_A” N (8)

where the primed product sign indicates product over all
j#=i. Equivalently, we write

n

I1a/" =1, foralli=1toN. 9)
j=1
Since the a’s commute with each other, all representa-
tions of the algebra given by Eq. (9) are one-dimen-
sional. We write

aj=explig;), j=1to N, (10)

where ¢; are some real numbers. In terms of ¢’s, Eq. (9)
can be written as

N
X Aij¢;=2xrn;, for all i, an
=1

where n;, i=1 to N, are some integers. Solving Eq. (11)
we get

N
¢i=2r 3, [A™"1;n;, for all i. (12)
=1

Equation (12) shows that the allowed values of {¢;} form
a periodic lattice in the N-dimensional space. For each
choice of {n;}, we have a set of values {¢;}, which gives a
representation of the operator algebra of Eq. (9). But
¢;’s are phases, and are defined only modulo 2z. Thus in
Eq. (12), only points lying with the N-dimensional cube
0=<¢; <2z (i=1 to N) give rise to distinct representa-
tions. The number of such representations is the ratio of
volumes of the cube and the volume of the unit cell of
the ¢ lattice. This number is also equal to the number of
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distinct elements of the algebra, i.e., products of the type
a'a3?---an” (m,m,,... are non-negative integers)
which are not equal under Eq. (9). But each such ele-
ment acting on a configuration C gives rise to a distinct
configuration. Hence, this number must equal Ng, the
number of distinct configurations in &Z. Thus we get

Npg =DetA. (13)

Since all these configurations occur with equal proba-
bility in the SOC state, the entropy of the SOC state S is
given by

S =InDetA. (14)

For the directed models, the matrix A is upper triangu-
lar, and one recovers the result of Ref. 9,

N
Ne=T1A;. (15)

i=l
As another example, for the undirected nearest-
neighbor AM on the square lattice with free boundary
conditions studied in Refs. 1 and 5, we get for s, the en-
tropy per site of the SOC state in the thermodynamic

limit,

2r 2n
S=(27t)_zj; dej; deln(4 —2cosf—2cosg) . (16)

Equation (13) can be obtained more directly. In the
space of all possible (including unstable) configurations
obtainable from 7 by addition of particles, we define two
configurations {z;} and {z/} as equivalent iff under top-
plings, they evolve to the same stable configuration.
Then, if {z;} and {z;} are equivalent, there exist some in-
tegers r; (i=1to N) such that

N
Zj'==zj —j;lr,'Aij, for allj (17)

Thus if we represent {z;}’s by points of a N-dimensional
hypercubical lattice with basis vectors e;, the set of
equivalent points forms a superlattice with basis vectors
2 /=14;¢; (i=1 to N). Since to each equivalence class
of configurations there corresponds a unique recurrent
conﬁguration,12 the volume of the unit cell of the super-
lattice must equal Mg. This again gives Eq. (13).

It is desirable to get a more direct characterization of
the set #. We define a forbidden subconfiguration
(FSC) as any set F of r sites (= 1) if the corresponding
height variables {Zaj}, J € F, satisfy the inequalities

7 =X (=Ay), forall j€F, (18)

where the primed summation denotes sum over all i € F
with i=j. A (stable or unstable) configuration that con-
tains no FSC’s is called an allowed configuration. We
argue below that the set of stable allowed configurations
is the same as R. A more explicit characterization of R
is needed for calculation of various ensemble-averaged
quantities in the SOC state such as the average height,

probability distributions of avalanches by their mass,
durations, etc. This has been accomplished so far only
for the SOC state on a Bethe lattice, the details of which
will be reported in a future publication.'*> We find that
the probability that avalanche contains more than n sites
varies as n '/ for n. The probability that its duration
exceeds 7 varies as ¢ ~ ! for large t.

There is a simple recursive procedure to determine if a
given configuration is allowed. We consider a test set T
of sites. In the beginning, T consists of all the sites of
the lattice. We test the hypothesis F=T, using the in-
equalities (18). If these are satisfied for all sites in 7,
then the hypothesis is true and the configuration disal-
lowed. Otherwise, there are some sites for which the in-
equality is violated. These sites cannot be part of any
FSC, as the inequalities (18) will remain unsatisfied if T
is replaced by any smaller subset in its right-hand side.
Deleting these sites from T, we get a smaller test set 77,
and repeat the previous procedure. In the end, we either
get a finite FSC F, else the set T becomes empty, and
then the configuration is allowed.

We now show that the set of allowed, stable con-
figurations is closed under the dynamics of AM. Assume
the contrary. Then there exists an allowed configuration
C such that by a single toppling it becomes the con-
figuration C' which contains a FSC F (adding particles
only increases heights, and cannot create a FSC). If this
toppling occurs at site i, from the toppling rule (1) one
gets that if Fis a FSC in C’, then the set obtained by de-
leting i from F is a FSC in C. This contradicts our as-
sumption that C is allowed. Hence the set of allowed
configurations is closed. The recurrent configuration
with z; =A; for all i, is clearly allowed [by Eq. (4)].
Since all recurrent configurations are reachable from this
particular one, it follows that all recurrent configurations
are allowed. The converse statement appears quite plau-
sible, though a strict proof is lacking. Together, these
would imply that the set of allowed stable configurations
is R.

There is an interesting relationship between FSC’s and
avalanche clusters. To see this, consider a recurrent
configuration C, and let us try to construct the
C'=a;”'C. Let C" be the configuration obtained by de-
creasing z; in C by 1, and leaving other sites unchanged.
If C" is allowed, then C'=C", by uniqueness of inverse.
If C" is disallowed, it must contain an FSC, say F such
that i € F. Since the inequality (18) at site j is preserved
by toppling at all other sites, it follows that F is a subset
of the cluster of sites in C' where at least one toppling
occurs on adding a particle at i. In fact, F is the set of
sites where as many topplings occur as at i.

We now calculate the two-point correlation function in
the SOC state. Let G;; be the expected number of top-
plings at site j, due to the avalanche caused by adding a
particle at i. Then the total average flux of particles out
of site j is G;;A;;. The total average flux of particles into
site j is Xk Gix (— A;), where k is summed over all sites
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#j. In the SOC state, the average influx must equal the
average outflux, and we get

Y.GikAr; =8 (19)
3

and
Gij=[A~l],'j, for all l,_] (20)

An analog of Eq. (19) for the coarse-grained energy den-
sity was already written down by inspection in Ref. 7,

J

1 m n

()=

when the matrix A is a Laplacian operator. Note that
the argument leading to Eq. (19) is quite general. The
equation would hold even in a non-Abelian case when
the toppling condition depends on gradients.

As a simple application of Eq. (20), let us calculate
(T), the average number of topplings per added particle
on a finite L XL lattice for the square-lattice nearest-
neighbor AM. If a toppling occurs at the edge (corner),
one (two) of the particles leaves the system. Writing
down the matrix A, a straightforward calculation gives

=1
mn

Y cot?

m.,n

t n

2 s
2(L+1)
where the summation over m,n extends over all odd in-
tegers 1=m=<L, 1=<n=<VL. For large L, we get
(T)~L? This formula agrees with the recent numerical
estimates of (7) within numerical uncertainties.’

Finally, we determine the spectrum of relaxation to
the SOC state. Let P,(C) be the probability that the
stable configuration obtained after the rth particle has
been added is C. Then these satisfy the master equation

Pi+1(O) =§,W(C,C')P, ). (22)

LAL+1)2 20 +1)°°

The rates W(C,C') can be written in terms of an N g-
dimensional matrix W, which in terms of operators {a;}
is given by

N
W=2 pia;. (23)

i=1
Since the operators {a;} are simultaneously diagonaliz-
able with eigenvalues given by Egs. (10) and (12), the
eigenvalues of W are completely determined.

The choice n; =0 for all i in Eq. (12) corresponds to
the steady state with eigenvalue 1. The next largest ei-
genvalue determines the relaxation time of the slowest
decaying fluctuations in the SOC state. For the un-
directed d-dimensional AM with nearest-neighbor drops
only, we find that this relaxation time varies as L9, where
L is the linear extent of the system. Note that, for large
L, this is much larger than the average duration of an
avalanche t which satisfies 7 < (T)~L?2 In fact, in the
numerical simulations of AM, one can speed up relaxa-
tion in the SOC state substantially by using the commu-
tativity of a’s, and evolve by toppling only after (say)
every Nth particle is added.
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