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Hierachical Approach to Complexity with Applications to Dynamical Systems
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A hierarchical approach to complexity of infinite stationary strings of symbols is introduced by investi-

gating the scaling behavior of suitable quantities. The topological entropy, which estimates the growth
rate of the number of admissible words, corresponds to the first-order indicator C ' . At the second lev-

el, a novel indicator C"' is introduced which measures the growth rate of the number of irreducible for-
bidden words. Finally, a detailed analysis of 2D maps reveals that C"' can be expressed in terms of the
Lyapunov exponents.

PACS numbers: 05.45.+b

Many efforts have been recently made to better under-
stand dynamical behaviors intermediate between perfect
deterministic predictability and complete randomness.
The problem, in its simplest and nevertheless intriguing
version, can be formulated as that of characterizing the
complexity of an infinite sequence of symbols which,
without losing generality, are assumed to be the "letters"
0 and l.

Evolution of chaotic systems, for instance, can always
be described in this way by using a generating partition
to encode a generic orbit. The state of a 1D cellular au-
tomaton and DNA sequences belong, by definition, to
the same class of problems as well. ' However, even
remaining confined to 1D sequences, the state of the art
is still very preliminary: A satisfactory indicator of com-
plexity has not yet been introduced (for a review on the
subject, see Ref. 2). Grassberger noticed that a mean-
ingful definition of complexity should allow one to recog-
nize a purely random sequence as a simple pattern, be-
cause of the lack of rules behind its generation. As a
consequence, approaches like those introduced by Kol-
mogorov and Chaitin or Lempel and Ziv should be
considered as insufficient, as they end up reproposing the
concept of entropy, which associates a larger number to
purely random strings. While agreeing with the previous
request, we also point out that a plain sequence of 0's
should anyhow be recognized as simpler than a random
one. In fact, loosely speaking, many more inspections
must be made to realize that a given sequence belongs to

the class of random, rather than periodic, strings. Before
entering a detailed discussion, let us note that we restrict
our investigations to the problem of learning the rules of
an a priori unknown language, leaving aside the problem
of reproducing a sequence in terms of an a priori known
set of rules. This because we think that prior to repro-
ducing a sequence it is necessary to understand it. For
the sake of simplicity, we also limit ourselves to describ-
ing topological properties, thus ruling out a number of
definitions (like those given by Grassberger and by
Crutchfield and Young ) which deal with metric proper
ties.

To overcome the above-mentioned difficulty, we pro-
pose a two-step procedure, and suggest the possibility of
a future introduction of higher-order steps. Indeed, we
conjecture that the learning process of a given infinite
string of symbols is hierarchically organized, each step
being naturally associated with a suitable indicator of
complexity. At the first level, the "size" of the vocabu-
lary is investigated, while at the second level the "size"
of the underlying grammar is analyzed. Since the most
general class of languages one can expect to find is
presumably characterized by an infinite vocabulary,
grammar, etc., we propose to define each complexity in
terms of the scaling rate of the "sizes," rather than in
terms of the "sizes" themselves.

More precisely, having defined the number N, (n) of
admissible subsequences of length n, we introduce the
first-order complexity C ' as the asymptotic growth rate
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C =l+D/(1+D), (2)

where multifractal corrections have been neglected (usu-
ally yielding corrections of a few percent), and where X+
is the positive Lyapunov exponent, while D is the frac-
tional part of the attractor's dimension. Before deriving
Eq. (2), we consider the simple case of a 1D map, y„+1
=F(y„), of logistic type. Here it is not possible to have
more than one irreducible FS of length n. By denoting

lnN, (n)/n. It is nothing but the topological entropy, in

agreement with the common belief that the entropy con-
tributes to defining the concept of complexity. This indi-
cator allows one to discriminate between periodic and
random strings, while it fails to recognize random strings
as simple objects. Such a task is accomplished at the
next level, where we look for possible regularities of a
given language. We think that the most objective way of
defining the notion of a rule for finite-length ~ords is
that they should not contain irreducible forbidden words,
where irreducible means that the word does not include
any shorter forbidden sequence (FS). Analogously to
the first level, we then define a second-order indicator
C~ as the growth rate of the number Nf(n) of FS's,

lnN (n)
(1)

n ~ 77

This Ansatz is suggested by the fact that the most gen-
eral scaling behavior of Nf(n) should be of the same
type as the growth rate of admissible words, with the
only obvious limitation C & C ' . In fact, we do not
see any reason why Nf(n) should exhibit a slower than
exponential growth rate. As a consequence, it is at this
stage that we discover that a purely random sequence is
simple: No FS's at all are discovered and C~ ~ is 0. For
generic chaotic dynamical syst'ems, instead, we expect
C to be nonzero, as a finite Markov partition (i.e., a
finite grammar) typically does not exist. The definition
of C is similar to the one suggested by Badii who,
however, restricts his analysis to periodic orbits organ-
ized in a suitable logical tree. Wolfram has given anoth-
er analogous definition in terms of the number of nodes
in the associated graph; the main difference is that he
assumes that all the rules are known a priori.

The introduction of a second level allows to compress
the information required to characterize a given string,
passing from the set of admissible sequences to the
smaller set of irreducible FS's. The next step requires, in

principle, to determine possible rules concatenating FS's
of increasing length. However, a precise formulation of
the problem is still lacking, and here we limit ourselves
to raising a very preliminary question. Is a language,
characterized by a set of randomly chosen irreducible
FS's, to be considered as the most complex or as the sim-
plest one, among all languages exhibiting the same C ?

In the second part of this Letter, we apply the previous
analysis to 2D maps, showing that

the coordinate of the maximum with xp and its ith
iterate with x;, a trajectory is encoded by associating a 0
or a 1 to y„, depending whether the point y„belongs to
Il ——(xp, x~) or I2= (x—2,xp), respectively. The existence
of FS's follows from the fact that I2 is, in general, not
exactly mapped onto I]UI2. If xo does not belong to
F(Iz) = [x3,x 1], there is one forbidden sequence of
length 2 (namely, 00). To determine the FS's of length
3, it is sufficient to iterate I3 =—F(I2). If xp belongs to
F(I2), there are no FS's of length 2, and we can write
F(Iz) as the union of two intervals ([xp,xl], [x3,xp]) of
which the first needs not be iterated, since its extrema
are previously found iterates of the maximum. In this
case we can find the FS's of length 3 by iterating
13 [x3 xp].—By applying the above sketched procedure
to I, , we can find a possible FS of length j and determine
the next interval I~+]. Finally, the existence of at most
one FS of length j follows from the need to iterate only
one interval at each step. Therefore, according to
definition (1), 1D maps, whatever the dynamical behav-
ior they exhibit, are never complex. This surprising con-
clusion follows from our definition of C as an ex-
ponential growth rate. Anyway, this is not to be con-
sidered as a real drawback, since 1D maps represent too
crude an approximation of physical systems, as they do
not guarantee invertibility of the dynamical behavior.
The more realistic 2D maps are instead associated with a
nonzero complexity, which consistently vanishes for
D 0, i.e., in the limit of a one-dimensional evolution.

Equation (2) will be derived with reference to a simple
model. The extension to more general systems naturally
follows. We investigate the map introduced by Tel,
which belongs to the class of Henon-type maps

x.+i -y. , yn+I =f(yn)+bxn, (3)

with f(y) =ay —sgn(y), where sgn(y) denotes the sign
of y. In the limit case b 0, the map reduces to the 1D
Bernoulli shift. We have chosen the Tel map, since the
dynamics along the stable and unstable manifolds are
really coupled together, while the expansion and contrac-
tion rates are independent of the position in phase space.
The attractor can be schematized as an infinite collection
of oblique segments organized in an almost self-similar
manner (see Fig. 1). Open trajectories are encoded ac-
cording to the sign of y (0 for y (0 and 1 for y )0).

To discover the rules hidden in the language of this
chaotic system, we construct progressive 1D approxima-
tions of the map, by using the infinite collection of seg-
ments which compose the unstable manifold of any
periodic orbit of map (3) (for the sake of simplicity we
have chosen the period-2 cycle P~, Pq shown in Fig. 1).
If we iterate a number h of times the two segments pass-
ing through P],P2, we find Wq =e + segments, each one
corresponding to a symbol sequence [S;(h)] which codes
the last h steps of its history. Further iterates of such
segments cluster around them in stripes of width
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FIG. 1. Attractor of the Tel map (3), reconstructed for
a 1.4 and b 0.3 from the unstable manifold of the period-2
cycle (P|,P2). The pairs of symbols indicate the four stripes
composing the attractor at the order h 2. The arrows indi-

cate the two extrema of each segment 8, which are iterated to
determine the FS's.

bp =e (where A, —is the negative Lyapunov exponent).
If we assume that distances smaller than Bh cannot be
resolved, then we can approximate the attractor with

segments 8; having for extrema those of the correspond-
ing stripes (see Fig. 1). This static approximation can be
straightforwardly transformed into a dynamical one, by
observing that a point (x,y) of 8; is mapped onto Bi,
where j is such that (Sj(h)) is obtained by shifting
lS;(h)j and adding one new symbol, determined accord-
ing to the actual sign of y. In other words, the evolution
in phase space can be interpreted as a one-dimensional
rule, chosen among a finite series of possibilities, accord-
ing to a code which is deterministically evaluated from
the past history. Indeed, knowledge of the code of the
initial segment allows one to determine y„+i from y„,
while the sign of y„+1 plus the initial code yields the new

code.
Before discussing the accuracy of this approximation,

let us investigate the properties of the language generat-
ed by the above map. To detect the FS's, it is necessary
first to determine the iterates of the extrema of each 8;,
discovering whether they allow both a 0 and a 1, and
then to repeat the same procedure for the iterates. How-

ever, analogously to the logistic map, where only the seg-
ment containing the nth iterate of the extremum xi of I i

is to be considered, here only the images 8;(n) contain-
ing the iterates of the initial extrema have to be tested.
Indeed, all the other segments generated after n iterates
coincide, within a distance Bh, with some previously gen-
erated 8;(n') (n'( n) Therefo.re, we can at most expect
as many FS's for each n as the number of the initial ex-
trema. One can reasonably expect that the fraction of
segments that do not break up remains finite for n

so that the number of FS's is asymptotically of the same
order as Nh. Moreover, as any FS is obtained by adding
a single bit to an admissible sequence, it appears reason-

before grossly failing to determine the correct FS's. As
the approximate map is built from all the segments of
word length h, all FS's up to this length are automatical-
ly given, and the first k iterates allow one to reach a
maximum length n h+k. As discussed before, such a

~+h
map presents an average number e ' of irreducible
FS's, a number which can now be interpreted as the ex-
pected number of FS's of length n in the true map. By
expressing h as a function of n, through Eq. (4), we
finally find

A, +n
Nf(n) =exp

1 —
A, —k+

(s)

which leads to Eq. (2), recalling the Kaplan-Yorke rela-
tion for the fractional part of the dimension D=X+
/iX- i. Equation (2) indicates that, keeping the positive
Lyapunov exponent (i.e., the topological entropy) fixed,
the language becomes more and more complex for in-

creasing dimension, and it reaches the maximum for a
conservative map where C equals 1+/2.

In order to check Eq. (2), we have performed accurate
numerical simulations on the Tel map. To begin with,
we have determined the first two segments of the unsta-
ble manifold of its period-2 cycle. Then, they have been
iterated enough times to guarantee an accurate deter-
mination of the maximum and minimum among all
points lying in the same stripe (the result of the pro-
cedure is sketched in Fig. I for h =2). As a final step,
the extrema of the 8 s have been iterated, looking for
possible crossings with the x axis. We then checked if
each FS, obtained in the case of no crossing, was really

able to conjecture that the probability that a FS is reduc-
ible remains strictly smaller than 1 in the limit of infinite
length. Accordingly, the order of magnitude of the num-
ber of irreducible FS's is given by Nh.

We are now in the position to discuss the accuracy of
our approximation. Being the extrema of each segment
8; are defined as the lowest and the highest among all

points of the corresponding stripe, their forward iterates
yield the largest possible segment lengths, thus prevent-
ing the recording of spurious FS's. The relevant dif-
ference from the true map arises whenever the iterate of
a 8; is to be broken up into two parts (associated with
different symbols), and the intercept with the x axis is to
be computed. The finite width Bi, =e of the stripes in-

duces an analogous uncertainty on the intercept itself
which is amplified according to the positive Lyapunov
exponent, when iterated. The indeterminacy is nothing
but a memory effect due to the bits "older" than h time
steps, and is crucial when it becomes of the same order
as the distance from the x axis, preventing a conclusive
decision on the existence of a FS. As the average dis-
tance from the x axis is —1, the 1D map can be at most
iterated k times, with k given by

(4)
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TABLE I. Comparison of the numerical (C„'„'„') and

theoretical [C&P', from Eq. (2)I estimates of complexity.
Letters T and L indicate Tel and Lozi maps, respectively; a and
b indicate the parameter values, while D is the fractional part
of the dimension, and k+ is the positive Lyapunov exponent.

Map

T
T
T
L
L

1.4 0.3 0.463
1.8 0. 1 0.617
0.85 0.8 0.347
1.6 0.4 0.414
1.7 0.3 0.504

D

0.278 0.101
0.211 0.108
0.609 0.131
0.311 0.098
0.295 0.115

(2)
&num

0.101 ~ 0.005
0.110~ 0.005
0.129 +' 0.007
0.105 +' 0.009
0.123+ 0.01

irreducible. The results for three sets of parameter
values and an approximation order h =15 are reported in
Table I, and indicate good agreement with the theoreti-
cal estimates.

The same procedure has also been applied to the Lozi
map [f(y) a —

1
—a iy i], where multifractal fluctua-

tions are present. The segments B; have been deter-
mined by iterating the unstable manifold of the fixed
point which belongs to the attractor. The results for two
sets of parameter values are reported in Table I, again
confirming formula (2) within numerical error and possi-
ble corrections due to the multifractal structure. As a
consequence, all such results strongly suggest the generic
charcter of Eq. (2). If cases with Ct ) smaller than the
value expressed by Eq. (2) certainly exist, we conjecture
that they have zero Lebesgue measure in the parameter
space.

In this Letter we have defined the first steps of a
hierarchical approach to the problem of complexity, in

terms of forbidden words of increasing length. We have
applied such a definition to 2D maps, deriving a relation
between the second-order complexity C t ) and Lyapunov
exponents. By no means do we claim that this hierarchi-

cal procedure, even when it will be fully set up, com-
pletely exhausts the whole problem of characterizing
complexity, which is a subject far from being under-
stood. However, we have shed new light on a series of
questions, not only introducing a new classification
scheme, but also proposing a different way of looking at
the properties of the many physical systems that can be
described in terms of I D sequences of symbols. One ob-
vious generalization of this scheme goes, for instance, in
the direction of accounting for the probability of each se-
quence, defining "metric complexities" as well.

Finally, we have also introduced a new approximation
scheme for 2D maps which is particularly powerful in
the derivation of long-length FS's and which, conse-
quently, allows one to compute the topological entropy in
the most precise way.
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