
VOLUME 64, NUMBER 13 PHYSICAL REVIEW LETTERS 26 MARCH 1990

Monte Carlo Calculations of the Correlation Functions for Heisenberg Spin Chains at T 0
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%e compute the ground-state spin-spin correlation function for the one-dimensional antiferromagnetic
Heisenberg model of spin 2, l, and 2 . The spin-1 chain has a disordered ground state with a correla-
tion length of 6.2 lattice spacings whereas the spin- —,

'
and the spin- 2 chains both have [1n(r)] /r decay-

ing correlation functions. The logarithmic corrections are different for the spin- —, and the spin- —,

chains. Finite-size scaling is used to analyze the data for chains of up to 128 spins.

PACS numbers: 75.10.Jm, 05.70.Ln, 75.50.Ee

From recent field-theoretical analysis of quantum spin
chains, ' a clear picture has emerged. For the antiferro-
magnetic Heisenberg model, it is argued using approxi-
mate mappings that integer-spin chains have gaps in the
excitation spectrum while the half-integer-spin chains do
not have gaps. Furthermore, it is shown that the low-

energy behaviors of half-integer spin chains all belong to
the same universality class described by the O(3) non-
linear o model with a topological term 8 n (Ref. 2) or
equivalently 3

by the Wess-Zumino-Witten (WZW)
model with topological coupling k 1. The latter model
can be exactly solved. The ground-state spin-spin
correlation function decays as ( —1)'/r. In addition, ac-
cording to recent developments in conformal field the-
ory, the leading logarithmic correction to this critical
behavior is also universal and the correlation function at
large distance is given by ( —I )'[In(r)] 'I /r. It is impor-
tant to verify this picture by comparing with numerical
results on finite chains.

In this Letter, we obtain the ground-state spin-spin
correlation functions for the Heisenberg model of spin

—,', 1, and 2 for chains. Our calculations show that for
the spin-1 chain with 64 spins, the correlation function
decays exponentially with a correlation length g 6.2.
For the spin--, ' and the spin--,' chains of length 128,
after a finite-size scaling analysis, the correlation func-
tions are best fitted by the form ( —I)'[In(r)] /r. The
algebraic decay is in agreement with the Haldane con-
jecture that the half-integer-spin chains are all in the
same universality class. The exponents of the logarith-
mic correction, however, are different for the spin- —,

'

(a 0) and for the spin- —', (a 0.85) chains. Both ex-
ponents are different from the predicted universal value

l

2

Using our method discussed below, it is also possible
to compute the lowest energy in any total spin sector
(the ground state is in the zero total spin sector). From
these energies, the zero-temperature magnetic suscepti-
bility can be determined. The susceptibility is related
to the topological coupling k in the mapping to the
WZW model. Also from the finite-size correction of the

&(i),j)) (i„,j„), (2)

where i [l,aj labels a site at the lth column and the ath

ground-state energy, we can obtain the conformal anom-
aly parameter c which is related to the low-temperature
specific heat. In this Letter, however, we will concen-
trate on the correlation functions.

Our strategy for obtaining the ground-state properties
of a finite system is to search first for a good trial wave
function, and then project it into the ground state. The
trail wave function is expanded in the valence-bond
basis which preserves the SU(2) symmetry of the Ham-
iltonian.

In order to use spin- —,
' valence-bond technology for ar-

bitrary spins, we first map the Hamiltonian of a spin-s
chain of length L to the one for a spin- —,

'
system on a

2s PcL lattice. For this purpose, a spin-s angular momen-
tum operator is written as s 2 Sg, '-~cr, S, where cr,
are Pauli matrices and S is the symmetrization operator
S [1/(2s)!]gt P, with the sum over all possible permu-
tations of 2s spins. It is easy to show that [s,S] 0 and
also S S. The Heisenberg Hamiltonian becomes

H Jg s; sj (J/4)g g cr;, crjbS;S, ,
J) a,b (i,j)

where i and j are the nearest neighbors and a and b run
from 1 to 2s. With this Hamiltonian, a spin-s chain of
length L is equivalent to a spin- —,

'
system on a lattice

with 2s rows and L columns. Since only the states that
are totally symmetric in cr, represent the spin-s states,
the wave function must be symmetrized for each column.

It is crucial in our method to start with a good trial
wave function before projecting to the ground state. We
use the spin- 2 valence-bond basis. Since the couplings
in (1) are between even and odd sublattices, the ground-
state wave function satisfies the Marshall sign conven-
tion. ' In the singlet subspace, we adopt the following
approximation:

h(14 —ji I ) h(li. —j. I )
ie E even

j E odd
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TABLE I. Listed are the best variational parameters h(I) and the corresponding variational
energies for the wave function in Eq. (2) for spin —, , 1, and —, . The parametrization is dis-

cussed in the text. For comparison, the ground-state energies per site computed by our projec-
tion method are also listed. The energies are in the units of J. The numbers in parentheses are
the estimated errors. Thus —0.4416(l) means —0.4416 ~ 0.0001.

Spin / (3& / (5& ~(7)
Variational

energy

Ground-state
energy

128
64

128

0.207
0.215
0.188

0.098
0.108
0.075

0.071 0.157
0.048 0.29
0.045 0.223

—0.114
—0.29
—0.202

-0.4416(1&
-1.401(1)
—2.829(1)

—0.4432(5&
—1.402(1)
—2.830(5)

row; (i,j) denotes a singlet bond from i to j with i (j)
belonging to the even (odd) sublattice; and /t ( I i —j I ) is
a positive variational parameter for (i,j). The wave
function is symmetrized for each column if the weight h

depends only on the column label / and not on the row
label a. Then permuting spins in each column does not
change the wave function.

The wave function in Eq. (2) with h 1, independent
of the length of a bond, is the Neel state (projected onto
the singlet subspace) with long-range correlations and an

energy —Js per site. We reduce the range of h(/) to
optimize the energy using rules for valence-bond states
and a Monte Carlo method described in Ref. 9.

In the Monte Carlo calculations, valence-bond con-
figurations are sampled from the multidimensional sum
of the wave function according to the positive weight
function h(/). The basic process is to choose two sites
from next-nearest-neighbor columns at random and at-
tempt an exchange of the bonds connected with the sites.

A transition to the new configuration is then made with
the probability of the ratio of the weights for the new

and the old configurations. The best bond amplitude
h(/) is found by the steepest-descent method as the
derivatives of the energy can also be computed directly.
Since the energy is insensitive to the bond amplitude
/t(/) at large distances, we set h(/) aexp( Pl) fo—r
/&/, . For smaller /, h(/) are free parameters. Notice
that h(/) 0 for even / because no bonds are allowed be-
tween sites on the same sublattice. Also, setting /t (1)=1
fixes the normalization constant for the wave function.

The optimized values of h(/) with /, 7 along with the
corresponding energies are listed in Table I. For large
spins the variational energy is closer to the ground-state
energy suggesting that the trial wave function in Eq. (2)
is a good description for large s.

After obtaining a good trial wave function, we project
it to the ground state. Starting with Ip«) cpIEp)
+c|IE~)+, wedefine

I n) (H —W)"
I P«& co(Eo W) "~

I Eo&+ci/co(E| —W) "/(Eo W)"
I E|&+ ' ' '

~

where W is a constant. The state I n) approaches the
ground state for large n provided that I (E —W)/
(Ep W) I

& 1 for all the states in the energy spectrum.
It can be shown that this condition is satisfied for any
W & (Ep+ JLs )/2 because the energy spectrum is

bounded from both above and below: Ep & E & JLs,
where Ep ( JLs ) is the g—round state of the antiferro-
magnetic (ferromagnetic) Heisenberg Hamiltonian.

If W is set equal to JLs 2, we have

H —W J$ (o1 tsar
—1)/4 JQQ1),

(i,j) &i,j)

and Q;; is simple to operate on the valence-bond states:
Q;;(i,j) —(i,j) and Q;;(i,/)(k, j)- —(i,j)(k, /)/2.
Thus after projecting with Q;;, the valence-bond struc-
ture is preserved. A Monte Carlo algorithm is similarly
implemented except now we also need to sample over the
products of Q's coming from expanding (Jg(;;)Q;;)". In
the Monte Carlo calculations, sampling over the wave
function and sampling over the products are mixed.
Most of the computer time is spent on the latter. %e
have checked that the final results do not depend on the
ratio of the two types of sampling which is typically 16

1

in our calculations. All the data reported here were
averaged over 16 runs with independent starting con-
figurations and random-number seeds. Statistical errors
were also estimated from the same set of data.

The correlation functions

, (n I sos, I n)

(n In&

for the state I n) defined earlier for a chain of length L
can be fitted to the formula

C„(r,L ) C (r,L) +8(r, L )exp( hn)—
to obtain the ground-state correlation functions C(r, L).
b. is given by exp( —5) =

I (E,„,—W)/(Ep —W) I, where
E,„t is the first excitation energy. For a fixed h, , we
determine C(r,L) and 8(r,L) from the raw data for
C„(r,L) vs n by a linear least g fit. The best 6 is then
determined by minimizing the total error.

Spin 1.—The ground-state correlation function for the
spin-1 chain of length 64 is shown in Fig. 1 and is found
to decay to zero almost exponentially. Nomura" sug-
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FIG. l. The circles are the ground-state correlation function
for the spin-1 chain of length 64. The line is a fit by the form

aJr exp( r/g). —The correlation length g is 6.2~0.1. The
statistical errors are much smaller than the size of the circles.

(4)

gested adding a prefactor Jr to correct the slight devia-
tion from the pure exponential decay. Fitting by the
form air exp( r/g), —where a and ( are constants, we

get g 6.2 which is identical to the value obtained by
Nomura. " The ground-state energy per site Eo/LJ

—1.40+'0.001 is very close to the previous esti-
mates. ""

The correlation functions were computed from
C„(r,L) with hn ranging from 1 to 6. Since in this case
the best 5 was difficult to determine from the data, we

used the known energy gap' Ee)(t Eo 0.41J in the fit.
Spin —,

' .—The ground-state energy per site calculated
for the spin- —,

' chain of length 128 is —0.4432+ 0.0005
which agrees with the exact value from the Bethe Ansatz
—ln2+ 4

—0.4431.
For a finite system there is a gap to the excited states

which goes to zero in the thermodynamic limit. The best
energy gap determined using the procedure described
above scales with the length of the chain L as E,„&—Eo 41J/L for L 16, 64, and 128. This, when com-
pared with the energy levels for the zero-momentum
singlet excitations of the k 1 WZW model, EI
—Eo (rr /L)l (I 2,4, . . . ), shows that the lowest exci-
tation in our trial wave function is very close to the
second excited state rather than the first one. This is be-
cause the excited state in question must have the same
symmetry as the ground state. Thus, the excited state
must be not only a singlet with zero momentum' but
also even under the reflection. Assuming the fitting pa-
rameter 5 in Eq. (3) is determined by E,„, Eo =4m /L, —
we obtain the ground-state correlation functions C(r, L)
for I. 64 and 128 with hn ranging from 1 to 3 using a
linear least g fit.

To extract the correlation functions in the thermo-
dymamic limit, we assume the following finite-size scal-
ing first proposed by Kaplan, Horsch, and Borysowicz, '

C(r, L) =C(r, ~)f(r/L), r, L

FIG. 2. The solid squares are the ground-state correlation
function multiplied by the distance ( —1)'r(sos, ) for the spin-

Heisenberg chain of length 128. The circles are the correla-
tion function in the thermodynamic limit extracted after a
finite-size scaling analysis. The oscillation with even and odd r
is consistent with the prediction of conformal field theory. The
errors come from two sources with roughly equal magnitudes:
statistical error in computing the raw data and the uncertainty
in fitting by Eq. (3) which is set to be 3% of b(r, L) in Eq. (3).

where f(x) is a smooth function with f(x) 1 for small
x. The functions C(r, ~) and f(r/L) are determined by
fitting C(r, 64) and C(r, 128) by Eq. (4). The finite-size
scaling is valid for a system near a critical point. We
have checked that for both s —,

' and & the correlation
functions for a finite chain C(r,L) at L 32, 64, and 128
are fitted by Eq. (4) with an accuracy of 1%.

After finite-size correction, rC(r, ~) is plotted in Fig.
2 along with the raw data rC(r, 128). The oscillation of
even and odd sites can be fitted by —0.25/r, in agree-
ment with the conformal field theory For . r smaller
than 20, our data C(r, ~) agree with the previous calcu-
lation of Kubo, Kaplan, and Borysowicz'6 who found
that the correlation function in that range is described by
[In(r)l /r with cr 0.2 to 0.3. At larger distances, how-

ever, our data suggest a smaller logarithmic correction
with rr 0

Spin 2 .—Using the same procedure as described for

the spin- -,
' case, an energy gap of 45J/L is obtained for

chains of length 32, 64, and 128. The energy gap for a
finite lattice is slightly larger than the gap for the spin- 2

chain because the logarithmic corrections are stronger. '

Using the finite-size scaling hypothesis, Eq. (4), we get
the correlation function C(r, ~) from raw data C(r, 64)
and C(r, 128). We have tried to fit the data by both
( —1)'/r" and ( —1)'[ln(r)l /r. If one plots log[~ C(r,
~)

~
] as a function of log(r), the absolute value of the

slope g grows with the distance r which indicates a poor
fit. On the other hand, the form ( —1)'[In(r)] /r fits the
data much better with o 0.85 (see Fig. 3). Also, when
the correlation functions without finite-size correction
C(L/2, L) for L 32, 64, and 128 are fitted by this latter
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FIG. 3. The solid squares are the ground-state correlation
function multiplied by the distance ( —I)'r&sps, ) for the spin-
-', chain of length 128. The circles are the correlation function

in the thermodynamic limit extracted after a finite-size scaling
analysis. The solid line is a fit to a[in(r)] /r with rx 0.85.
The error bars are determined in the same way as for the
spin- 2 case.

form we get o 0.85. The 1/r decay is consistent with

the idea that half-odd-integer-spin chains are all in the
same universality class. The exponent for the logarith-
mic correction a, however, is somewhat larger than ex-
pected. '

In conclusion, we have demonstrated the feasibility of
computing directly the ground-state correlation functions
for a long antiferromagnetic Heisenberg chain with arbi-
trary spins. For the spin-1 chain, our calculations show

that the ground state is disordered with a correlation
length equal to 6.2~0.1. On the other hand, for the
spin- —,

' and the spin--', chains, the correlation functions

are best fitted by an algebraic form ( —I)'[]n(r)]%.
For chains with 128 spina, after a finite-size scaling
analysis, we find cr 0 for the spin- 2 chain and cr 0.85
for the spin- —', chain. These results are in agreement
with the Haldane conjecture, especially the statement
that all the half-odd-integer-spin chains belong to the
same universality class. But the leading logarithmic
correction disagrees with the predicted value of —,

' from

conformal field theory.
The computation time for a chain of L spins is propor-

tional to EorL/dX, where Eo is the ground-state energy
and AE is the energy gap to the first excited state with

the same symmetry as the ground state. This method is

therefore much easier to apply to systems with a gap in

the excitation spectrum. It has also been applied to the
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