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Chaotic Dynamics of Ballistic Electrons in Lateral Superlattices and Magnetic Fields
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We study the classical dynamics of a ballistic charged particle in a two-dimensional (2D) periodic po-
tential and an applied magnetic field. We find chaotic behavior, in particular in the form of normal
diffusion and anomalous diffusion associated with 1/f noise. The mechanisms for the onset of 1D
diffusion and 2D diffusion are explained in terms of homoclinic intersections and Kolmogorov-Arnol’d-
Moser theory. The model may be used as a classical approximation for ballistic-electron dynamics in la-

teral superlattices on semiconductor heterojunctions.

PACS numbers: 73.40.Kp, 05.40.+j, 05.45.+b

The dynamics of charged particles in two-dimensional
(2D) periodic potentials and perpendicular magnetic
fields gives rise to a variety of interesting phenomena.
Based on the Peierls-Onsager hypothesis Hofstadter
demonstrated that the quantum states may exhibit a
self-similar band structure depending on the incommen-
surability of two characteristic length scales.! The cor-
responding quasiperiodic Schrodinger operator may have
a spectrum with a singular continuous component? and
the wave functions may be critical or exotic, i.e., neither
extended nor localized.> To circumvent unaccessibly
strong magnetic fields Hofstadter suggested study of
artificial 2D superlattices with much larger lattice spac-
ing than in natural crystals.! On the other hand, as the
lattice spacing increases with respect to the Fermi wave-
length, the wave-packet dynamics approaches the classi-
cal limit. With the present possibilities to realize high-
mobility heterojunctions with lateral periodic microstruc-
tures, the time has come to also ask for the classical
counterpart of the problem, e.g., as an approximation for
the dynamics of a ballistic electron.

In the present Letter we show that the classical coun-
terpart of the model studied by Hofstadter and others
exhibits chaotic behavior caused by a nonintegrable cou-
pling due to the magnetic field and we point out the
relevance of Kolmogorov-Arnol’d-Moser (KAM) theo-
ry* for the observed phenomena. In particular we find
various types of chaotic diffusion, which we characterize
by a power spectral analysis. As the magnetic field is in-
creased from zero, a one-dimensional (1D) anomalous
diffusion process sets in. It is accompanied by 1/f noise
corresponding to a nonlinear growth of the mean-square
displacement. For stronger fields there are transitions to
normal diffusion, 2D diffusion, and 2D anomalous
diffusion. Based on Poincaré surfaces of section we ex-
plain the mechanism for the onset of 1D diffusion by the
generation of stochastic layers due to homoclinic inter-
sections near the unperturbed separatrices. The transi-
tion to 2D diffusion is caused by the breakup of invariant

KAM tori.

One possible application of the model is the motion of
ballistic electrons in lateral superlattices on semiconduc-
tor heterojunctions.>® At present these systems are
studied intensely not only for academic reasons, but also
for their potential use in future devices. The superlattice
serves to break the lateral free-electron behavior and to
produce minigaps.® Lateral superlattices with 1D modu-
lations®’ and 2D modulations® have been realized with
lattice parameters down to about 200 nm. The lattice
parameter a is larger than the Fermi wavelength (e.g.,
a/Ar =8 in Ref. 6) and it is rather a problem to reduce
this ratio than to increase it. The dynamics of wave
packets can therefore be treated on the basis of classical
approximations.® For a typical 2D modulating potential
we have previously studied the classical chaotic dynamics
in the absence of a magnetic field.'®!" We found a new
mechanism for 1/f noise and presented a statistical
theory for its explanation. Avoiding the chaotic dynam-
ics would require a special modulating potential consist-
ing of two perpendicular plane waves. This situation
may be realized, e.g., using the persistent photoconduc-
tivity effect.® Considering such an integrable potential
we show here, however, that addition of a magnetic field
will again cause chaotic behavior. One of our con-
clusions regards the elastic mean free path /, (~10 um
in AlGaAs/GaAs heterojunctions®). The occurrence of
chaotic diffusion in a regular superlattice may reduce the
lengths of free paths. Other possible applications of this
classical treatment are related to particle channeling,
fast-ion conductors, and electrostatic plasma waves.

We consider a classical particle with charge e, mass m,
and energy E moving in a 2D periodic potential under
the influence of a homogeneous magnetic field B =Bz,
described by the Hamiltonian

H(x,y,px,py) =(1/2m)[(p,+eBy/2)*+ (p, —eBx/2)?]

+Vix,y), 1)
where V(x,y) =Vol2+cos(2nx/a)+cos(2zy/a)] is an
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isotropic (superlattice) potential represented by the
lowest Fourier components. In the case of a semiconduc-
tor heterostructure, m represents the effective mass m*
and E the Fermi energy Er. Measuring energy in units
of Vg, lengths in units of the lattice constant a, and time
in units of the inverse harmonic frequency wo=(47%V/
a’m)'? leads to scaled variables H=H/V,, % =2nx/a,
y=2ny/a, i=wot. The equations of motion then read
(omitting the tildes for convenience)

X =vy, Uy=sinx+2Av,,

(2)
y=vy, 0, =siny —2ivy,
corresponding to the Hamiltonian
H(x,y,px,py) = (px+1y)?/2
+(p, —Ax) 2+ V(x,y), 3)
V(x,y) =2+cosx+cosy . 4)
The dimensionless quantity
A=eBa/(1672mVy) 2 =w. 2w (5)

proportional to the applied magnetic field B describes the
nonintegrable coupling between the 2 degrees of freedom
and is related to the bare cyclotron frequency w.. Note
that there are two integrable limits in this model, that is,
A— 0 and A— oo.

The potential V of Eq. (4) has minima at the energy
E =0, saddle points at E=2, and maxima at E=4.
Thus in the regime E < 2 all orbits are restricted to one
unit cell for all values of A. For E > 2, localized and
delocalized orbits may coexist. In this article we concen-
trate on the intermediate energy range 2 < E <4, where
qualitatively the results do not depend on the value of E.
Because of space limitations we present numerical results
only for the special choice E=2.92. In this energy range
we find delocalized periodic and drifting quasiperiodic
orbits coexisting with localized motions in phase space.
The most interesting feature, however, is the occurrence
of a variety of (deterministic) diffusive motions, which
we have analyzed by means of the velocity power spec-
trum

Sa@) = [ w0 (D0 O dr (@€ fxpb), (©
2 J -

where the angular brackets denote time averaging. We
have determined S,(w) using the Wiener-Khinchin
theorem for a set of initial conditions located in the sto-
chastic layers (e.g., of Fig. 3). With increasing A start-
ing with A =10 ~* we obtained the following results. For
small magnetic fields (A <1073) the velocity fluctua-
tions show 1/f noise (see Fig. 1), i.e., a low-frequency
divergence of the spectral density S,(w)~w ~# with
BS1 (Fig. 1, spectrum a). As explained in a previous
article,'? this must be associated with anomalous diffu-
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FIG. 1. Velocity power spectra S, (w) for various magnetic
field strengths A. For (a) A=10"2 and (c) A=0.07, S,(w)
diverges as ® # with B=1 corresponding to anomalous
diffusion. For (b) A=10"2, S,(w) remains finite for ®— 0
corresponding to normal diffusion.

sion, where the mean-square displacement oy (1)
=(y2(t)) grows faster than linearly in time,
c2(t)~t'*2. Above A=10"" there is a transition re-
gion where the character of the spectrum changes and
near A =10 "2 the low-frequency divergence has disap-
peared (Fig. 1, spectrum b). We thus can conclude that
there is a transition to normal diffusion characterized by
a finite value of the diffusion coefficient D =xS (0w =0)
and by a linear growth of the mean-square displacement.
Inspection of the orbits in the above two cases shows that
the particle diffuses along one axis only and remains
confined in the perpendicular direction. At a critical
field strength A, =0.014 there is a transition from 1D
diffusion to 2D diffusion, where the particle performs a
random walk in the x-y plane. With increasing values of
A the 2D diffusion becomes anomalous (see Fig. 1, spec-
trum ¢) and a normal regime is reached again above
A=0.3.

We have verified the above results independently by
studying the distribution of free paths. In our simula-
tions the diffusing trajectories could be segmented into
alternating episodes of motion within a potential well
and motion across a number of lattice cells. We refer to
the latter as free paths. Assuming them as independent
events we describe their distribution by a probability
density y,(¢), where y,(1)dt equals the fraction of paths
parallel to the a axis with duration between ¢ and ¢ +dt
(a € {x,y}). For computational reasons we only use the
integrated probability density

@)= " yuls)ds. )

It can be shown'? that the velocity power spectrum and
the integrated probability density are related by

(v2)
ity

S.(@) = i J.” ousin(@nar, @®)
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FIG. 2. Poincaré surface of section at the potential
minimum for the zero-field case (A=0). Two separatrices
divide the phase space into regions of delocalized (drifting)
motions (I, III ) and localized motions (II).

where {z,) is the average duration of a free path. In ac-
cordance with the above results we found that ®,(¢) falls
off exponentially ®,(t)~e ™% in the case of normal
diffusion.'? This leads to a Lorentzian S,(w)~1/(w?
+a?) for Eq. (8) with a finite value of S,(w=0). On
the other hand, we observed algebraically decaying
long-time tails ®,(t)~¢~" with v=1 in the cases of
anomalous diffusion. Equation (8) then predicts S,(w)
~o""? with v—2= —1 in accordance with Fig. 1,
spectra a and c.

We can understand the mechanisms for diffusion as
well as the transitions between the regimes by analyzing
the Poincaré surfaces of section (Figs. 2, 3, and 4). All
sections show the y-v, plane and x =z (mod2r), i.., in
the potential minima. Because of the discrete transla-
tional symmetry of the potential all y coordinates
(mod2x) are identified and plotted within the unit cell
[0,27]. For the total energy we can write E=E,+E,,
where E and E, are the instantaneous energies of each
degree of freedom, e.g., E, =l+cosy+vy2/2. The outer
boundary of the Poincaré surfaces of section is always
given by the curve E, =FE. Consider first the zero-field
case A=0. Here the equations of motion separate into
two uncoupled pendulum equations, the energies £, and
E, are each conserved, and the orbits appear as invariant
curves of constant E,. The latter can be constructed
simply from the phase portrait of the pendulum. The
two pendulum separatrices for E, =2 and E,=FE —2
(i.e., Ex=2) divide the plane into three regions as de-
picted in Fig. 2: In region I, i.e., above the y separatrix
(E, > 2), the orbits correspond to the running solutions
of the y pendulum. They are delocalized in y (drifting
orbits) and thus must be localized in x (in the E range
considered here). In region III, for E, <E —2 we have
E, > 2 and thus the orbits correspond to running solu-
tions of the x pendulum and must be localized in y.
Note that these two regions are interchanged under the
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FIG. 3. Same as Fig. 2 for A=0.01. The onset of 1D
diffusion consists in the creation of stochastic layers around the
two separatrices and is caused by homoclinic intersections.

symmetry operation x— y, y— —x. In the intermedi-
ate region II, we have E, <2 and E, <2, corresponding
to swinging motion of both pendula, and the particle per-
forms local motions in both directions. The area of lo-
calized orbits between the two separatrices decreases
with increasing total energy and disappears for E =4,
when the particle energy exceeds the potential max-
imum. In the section there is an elliptic fixed point at
y=mn, v, =0, corresponding to the minimum of the po-
tential, and a hyperbolic point at y =0, v, =0, corre-
sponding to the saddle point of V.

As we apply a magnetic field (A > 0), in regions I and
III regular drifting orbits continue to exist (Fig. 3).
New elliptic and hyperbolic fixed points are created by
nonlinear resonances. Stochastic layers appear at the
two separatrices as expected and grow with increasing
magnetic field. The sharp boundaries between regions of
localized (II) and delocalized orbits (I, III) are thus des-
troyed and a chaotic orbit in the layer may switch from a
localized to a delocalized region and vice versa. This is
the origin of diffusive motion. The outer layer generates
diffusion in the y direction. For symmetry reasons the
inner layer plays the same role for the x direction. The
stochastic layers and thus the onset of 1D diffusion are
caused by a homoclinic intersection of the unstable and
stable manifolds of the hyperbolic fixed point.*

We now turn to the mechanism for the onset of 2D
diffusion. As is seen in Fig. 3 the inner and the outer
stochastic layer are separated by invariant KAM tori
acting as barriers. An orbit in the outer layer thus can-
not reach the inner layer and a particle diffusing in the y
direction cannot switch to free paths in the x direction.
With increasing perturbation the KAM tori break up
into cantori'® and become partially penetrable thereby
allowing 2D diffusion. Figure 4 shows the critical case
Ac=0.014 where the two stochastic layers start being
connected. The rate of switching between x diffusion
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FIG. 4. Same as Fig. 2 for A=0.014. Two-dimensional
diffusion sets in as the KAM tori separating the two stochastic
layers in Fig. 3 are destroyed. The connected stochastic region
was generated by a single orbit.

and y diffusion is determined by the flux across two
“golden” cantori. From work on the standard map'3 we
may expect that it shows critical scaling behavior near A,
with a power-law growth (A —2.) 3011722,

Finally we discuss the origin of the observed 1/f noise
and anomalous diffusion. In these cases the Poincaré
sections exhibit sufficiently large regular islands in the
delocalized regions of the chaotic layers.'? The islands
are surrounded by daughter islands and a self-similar
hierarchical arrangement where each island is encircled
by barriers (low-flux cantori). This is also what one ex-
pects generically for a nonintegrable Hamiltonian sys-
tem. A chaotic orbit may penetrate into this hierarchy
of barriers and remain trapped for an arbitrarily long
time thus causing long-time tails. More details of this
mechanism will be given elsewhere.'? For another model
we have previously presented a statistical theory relating
the a(l)gcbraic free-path distribution to the island hierar-
chy.!

The parameter regimes considered here can be real-
ized in lateral surface superlattices®® (typical values
a=500 nm, Ar =50 nm). Our nonlinearity parameter A
[Eq. (5)] does not only depend on B and a, but also
varies inversely with V§/2 Using the technique of
Winkler, Kotthaus, and Ploog7 the amplitude of the su-
perlattice potential can be varied between 0 and 1 eV by
varying the gate voltage. It is therefore not a problem to
reach values of A between 103 and 10! including the
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values considered here (e.g., A =2 for B=1 T and V(=1
meV). The chaotic fluctuation phenomena can dominate
the current autocorrelation function and power spectrum
at low temperatures only. For intrinsic reasons 1/f noise
precludes a determination of its noise level. Thus a
quantitative comparison of our 1/f mechanism with oth-
ers is not possible.
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FIG. 2. Poincaré surface of section at the potential
minimum for the zero-field case (A=0). Two separatrices
divide the phase space into regions of delocalized (drifting)
motions (I, III ) and localized motions (II).



