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Freezing of a Quantum Hard-Sphere Liquid at Zero Temperature: A Density-Functiona& Approach
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Quantum freezing of the Bose hard-sphere liquid is described by an extension of the classical modified
weighted-density approximation to nonuniform quantum liquids at zero temperature. The theory re-
quires structural and thermodynamic information for the corresponding uniform quantum liquid, which
we have chosen to take, for the purpose of illustration, from the paired phonon analysis. Predictions for
solid-phase energies and for freezing parameters are in generally good agreement with available simula-
tion data.

PACS numbers: 64.70.Dv, 05.70.-a, 64.60.—i, 67.80.—s

A fundamental application of the density-functional
method' is to the freezing transition in simple liquids.
Using information on the structure and thermodynamics
of the uniform liquid, the method leads to predictions for
the densities of the coexisting liquid and solid phases, the
latent heat of transition, and the Lindemann parameter.
Although agreement with simulation results tends to
vary with the system studied and with the version of the
method used, especially notable success has been ob-
tained in the important case of the classical hard-sphere
liquid, where the predicted freezing parameters agree
with simulation usually to within a few percent. An in-

teresting issue, therefore, is the manner in which the gen-
eral method may be extended from classical to quantum
systems, and whether, in particular, it can illuminate the
physical nature of the freezing transition in quantum
liquids. Recently, one version of the density-functional
method, the Ramakrishnan-Yussouff theory, has been
extended and applied to freezing of a Lennard-Jones
model of He at finite temperatures, and also to freez-
ing (Wigner crystallization) of the ground-state Fermi
one-component plasma. The purpose of this Letter is
first to report a general extension of a quite dtgerent ver-
sion of the method, the modified weighted-density ap-
proximation, ' from classical systems to quantum sys-
tems at zero temperature, and then to demonstrate its
utility in the specific case of freezing of a Bose liquid of
hard spheres.

In a density-functional approach to nonuniform quan-
tum liquids at zero temperature the central quantity is

the total ground-state energy E[p], a unique functional
of the one-particle density p(r). In the absence of an

external potential, the functional can be conveniently
separated by writing

E[p] -E;g[p]+E,[p],
where E;d[p] is the ideal gas energy, the-energy of the
nonuniform system without interactions, and E,[p] is the
correlation energy, due to interatomic interactions and
exchange. The advantage of this separation is that
E;d[pl can be treated exactly. In contrast, E, [p] is un-

M wDA
[p]/N e (p ) (2)

where N is the number of particles, e is the uniform-

liquid correlation energy per particle, and p is deftned by

fO

p= —„drp(r) dr'p(r')w(r —r';p) .

As in the classical formulation, ' the self consisten-t
choice of the density argument of the "weight function"
w in Eq. (3) is essential. To ensure that the approxi-
mation is exact in the limit of a uniform liquid

[p(r) p], w must be normalized, i.e.,

dr'w(r —r';p) 1. (4)

A unique determination of w follows from requiring that
E, "[p] satisfies

b2E MwDA[ ]
1 m

'
', -.(Irr'I p),

p(r) —p bp(r) bp(r')
(s)

where U() r —r'~;p) is to be interpreted as an extension
to quantum liquids of the classical Ornstein-Zernike
direct correlation function. Equation (5) ensures that a
functional Taylor-series expansion of E, [pl about
the density of a uniform reference liquid is exact to
second order, and includes approximate terms to all
higher orders.

From Eqs. (2)-(5), it is now straightforward to show
that the weight function is given (in Fourier space) by

known for nonuniform systems, and is here approximat-
ed by a simple extension to nonuniform ground-state
quantum liquids of the modified weighted-density ap-
proximation6 (MWDA). The basis of the MWDA is the
assumption that the average correlation energy per parti-
cle of the nonuniform system can be equated to its coun-
terpart for the uniform liquid evaluated at a weighted
density assumed to depend on a weighted average over
the volume of the system of the (spatially varying) physi-
cal density, i.e.,
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the simple relation From Eqs. (6) and (9), Eq. (3) now takes the form

v (k -0;p) -2e'(p) +pe" (p), (7)

which may be interpreted as a '"quantum compressibility
rule. "

Equations (2), (3), and (6) now constitute the
MWDA for a nonuniforin quantum liquid at zero tem-
perature. For the Bose hard-sphere system, we have
chosen to compute the required liquid-state information,
e and v(k), via the paired phonon analysis (PPA). The
PPA gives approximations both for e and for the struc-
ture factor S(k), from which we then obtain v(k) from
the simple relation '

h, 'k' 1v(k)- —1
4m g'(k)

where m is the mass of a particle. It is important to
mention, however, that the PPA does not guarantee con-
sistency between e and v(k), in the sense that the
compressibility rule [Eq. (7)] is not satisfied exactly.
Therefore, in order to ensure that Eq. (7) is satisfied, we

have scaled the PPA v(k) by the factor (2e'+pe")/
v(k 0), resulting in an increase in magnitude of about
20% (see below).

The main steps in the application to freezing are (i)
parametrization of the solid density, (ii) minimization of
the total solid energy with respect to the parametrized
density, and (iii) location of the liquid-solid transition.
The parametrization of the solid density p, (r) requires
first, the choice of a crystal structure and second, an as-
sumption for the form of the density distribution. As in

previous studies of the classical hard-sphere system, we
have assumed a perfect crystal with a simple Gaussian
form,

3/2

p (r) a ge -air-Rl'
R

N (k;p), [v(k;p) —bi, ppe" (p)l,2e'(p)

where primes on e denote derivatives with respect to den-
sity. We note from Eqs. (4) and (6) that

p(a, p, ) -p, 1+ g e G'"v(G;p), (10)
2e'(p) «o

where p, is the average solid density, and 6 the magni-
tude of the reciprocal-lattice vector G of the solid densi-

ty. This implicit relation for p can be easily solved (for
fixed a and p, ) by numerical iteration, ' and the approx-
imate correlation energy E, is then given by Eq.
(2). In the case of nonoverlapping Gaussians —a good
approximation at densities near freezing —the ideal-gas
energy E;d takes the particularly simple form E;d/N
=36 a/4m, identical to the form usually assumed in

variational Monte Carlo simulations, ' leading Anally to

DA(
a+e(p(a, p, )),N 4 m

which is to be minimized with respect to a at/txed p, .
Figure 1 illustrates the minimization procedure, showing
separately the dependence of the ideal-gas and correla-
tion energies on a. For simplicity, we have plotted for
E;d only the linear approximation, though this is strictly
valid only for aa ) 5. Note that E;d increases with a,
strongly opposing localization of the atoms about lattice
sites, while E, falls off' rapidly with a, strongly favoring
localization. The competition between E;d and E, may
result —for sufficiently high p, (as in Fig. 1)—in a
minimum in the total energy at nonzero a, implying a
mechanically stable solid. Thermodynamic stability of
the solid relative to the liquid is determined by compar-
ing the liquid and solid energies. By varying p, and re-

peating the minimization procedure, the solid-phase en-

where a is a "localization parameter" determining the
width of the Gaussians centered on the lattice sites at po-
sitions R. This assumption is suggested by the Green s-
function Monte Carlo simulation of a Lennard-Jones
model of He by Whitlock et al. ,

" who examined the
solid density and concluded it to be spherically sym-
rnetric about a given lattice site with only small positive
deviations from Gaussian behavior in the tail of the dis-
tribution. To our knowledge no such test has been per-
formed for Bose hard spheres. Nevertheless, since we
expect the hard-sphere and Lennard-Jones solids to ex-
hibit rather similar behavior, we judge these simulation
results, and the ensuing predictions of the MAZDA, to be
reasonable justification for our use here of Eq. (9).
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FIG. l. Ideal-gas (linear approximation), correlation, and

total ground-state energies per volume (in units of tt '/ma') vs

localization parameter a for the Bose hard-sphere fcc crystal at
reduced average solid density p, a 0.3.
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FIG. 2. Total ground-state energies per volume (in units of
h /ma~) vs density p for the Bose hard-sphere liquid (from
PPA) and fcc crystal (from MWDA). Circles and squares are
simulation data (Ref. 13) for the liquid and crystal phases, re-
spectively. Inset: The density dependence of the localization
parameter a.

ergy curve (E/V vs p, ) is obtained. The result for the
fcc crystal is shown together with the PPA liquid-phase
energy curve in Fig. 2, where the crossing of the two
curves confirms the occurrence of a freezing transition.
Also shown for comparison are the simulation data of
Hansen, Levesque, and Schiff' for the liquid and fcc
crystal. The inset in Fig. 2 shows the dependence of a on

p„ illustrating that an increase in density naturally re-
sults in stronger localization. The value of a at the solid
coexistence density is directly related to the Lindemann
parameter L, defined as the ratio of the rms displace-
ment of an atom from its lattice site to the nearest-
neighbor distance in the solid at coexistence. For the fcc
crystal, L (3/aa ) '/, where a is the lattice constant.

The liquid-solid transition is finally located by con-
structing a common tangent to the liquid and solid ener-

gy curves, ensuring equality of the pressures and of the
chemical potentials in the two phases. The resulting
freezing parameters are given in Table I for fcc, hcp, '

and bcc crystals, together with available simulation
data. '3 Considering the extreme sensitivity of the coex-
istence densities —as determined by the common tangent
construction —to the accuracy of the energies, we view

the overall agreement between theory and simulation as
quite favorable. The predicted solid and liquid coex-
istence densities are a little too high, by 14% and 7%, re-
spectively. The predicted change in density is signifi-
cantly higher than the simulation value, but the Lin-
demann parameter, a quite sensitive test of a freezing
theory, is underpredicted by only 11%. This discrepancy,
as well as that in the change in energy per particle, can
be at least partly attributed to the overprediction of the
solid coexistence density.

The Lindemann parameter is of particular significance
to the physical nature of the freezing transition. Its
value predicted by the MWDA for Bose hard spheres
(L 0.240, from Table I) is close to 3 times the corre-
sponding prediction for classical hard spheres (L 0.097,
from Ref. 6), in general agreement with simulation. " In
the theory, the larger quantum value evidently results
from the relatively strong variation of the ideal-gas and
correlation energies with localization, such that minimi-
zation of the total energy occurs at much weaker locali-
zation than in the classical system (compare Fig. I of
this paper with Fig. 2 of Ref. 6).

The choice of crystal structure evidently has only a
minor effect, reflecting the fact that the predicted ener-
gies of the different structures are extremely close, actu-
ally differing by less than 0.5% over the range of densi-
ties shown in Fig. 2. Indeed, on the scale of Fig. 2 the
energy curves would be practically indistinguishable.
The similar behavior of the two close-packed structures
is not surprising, since it has previously been seen in

simulations' ' of He and of the classical hard-sphere
system. The similarity of the bcc structure to the close-
packed structures is more interesting, since it is in sharp
contrast with the classical case, where both density-
functional theory and simulation predict the free energy

TABLE I. Freezing parameters for the Bose hard-sphere system at zero temperature: aver-
age solid density p„ liquid density p&, change in density hp, change in energy per particle
&(E/1V) (in units of h ~/mo~), Lindemann parameter L, and cia ratio for the hcp crystal (Ref.
14).

Simulation'
fcc

MWDA
fcc
hcp
bcc

'See Ref. 13.

p, cr 3

0.25 +' 0.02

0.284
0.284
0.280

pi 0'

0.23 ~ 0.02

0.246
0.246
0.247

0.02

0.038
0.038
0.033

&(E/N)

1.28

2.668
2.688
2.338

0.27

0.240
0.240
0.249

c/a

1.629
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of the bcc crystal to be always significantly higher than
that of the fcc near freezing. ' This may reflect a small-
er sensitivity to structure resulting from the larger rms
atomic displacements in the quantum solid. To our
knowledge, however, there exist no simulation results for
freezing of the Bose hard-sphere liquid into a bcc crystal
with which this prediction may be compared.

The theory described above appears to be a satisfacto-
ry extension of the classical density-functional method to
quantum freezing. It is important to note, however, that
because the predictions of the theory are very sensitive to
the input liquid-state structure, i.e., v(k), it is difficult to
separate the issue of the accuracy of the theory from the
issue of the accuracy of the necessary input. As men-

tioned, the choice of the PPA v(k) is not completely sa-
tisfactory, and scaling to enforce the quantum compres-
sibility rule is necessary to obtain favorable agreement
with simulation. Thus, although the theory has been
demonstrated to be successful for a particular liquid-
state structure (PPA), it is clearly of interest to explore
its utility further by using more accurate approximations
to the liquid state. This issue, as well as the applicability
of the theory to other bulk-phase phenomena, such as
solid-solid transitions, and to other systems, such as Fer-
mi hard spheres or via pe—rturbation theory —Lennard-
Jones models of He and He, is currently under investi-

gation.
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