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Observation of a Kink Soliton on the Surface of a Liquid
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When a long channel of shallow liquid is driven parametrically, there can occur a 180' kink in the
phase of the fundamental cross mode of the surface. The kink is stable and localized, and is nonpro-
pagating in the limit where the system is uniform. The weakly nonlinear theoretical description is a
damped driven nonlinear Schrodinger equation supplemented with second harmonics. The kink is a
robust state even at amplitudes where the perturbation expansion leading to this equation is unjustified.

PACS numbers: 43.25.+y, 47.35.+i

We have observed a kink in the phase of surface wave
oscillations on a shallow liquid in a parametrically driven
rectangular channel. ' The stability of this state suggests
that it is a physical realization of a soliton. Figure 1

shows a perspective view of a mathematical idealization
of the kink, which is a localized transition between two
uniform domains that are 180' out of phase. A breather
soliton has been observed in a similar system with deep
liquid. The experiments reported here were motivated

by our observation of a kink in a parametrically driven
pendulum lattice.

The best experimental evidence for the solitary nature
of the kink is its slow but reproducible drift motion in a
channel that is slightly tilted. Figure 2(a) shows the
profile (maximum and minimum vertical surface dis-
placement) as the kink drifted by a fixed probe, which
was located at the longitudinal midpoint and near one
wall of the channel. The kink moves to shallower regions
until it stops in the vicinity of the end wall. The
minimum peak-to-peak amplitude is not strictly a node

2-

(a)

0
o

0,2-

0.1

r

0-

4
time (min. )

1

(b)

as in Fig. 1 at x 0, but for convenience we will refer to
it as such. Figure 2(c) is a graph of the drift velocity as
a function of the angle of inclination of the channel. The
drift velocity was measured by timing the transit of the
cusp (Fig. 2) as it moved between two probes located
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FIG. 1. Perspective view of a mathematical approximation
of the observed kink. The vertical surface displacement is pro-
portional to tanh(ax)cos(ny/w).
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FIG. 2. Drift motion of a kink: (a) profile at a fixed probe,
(b) enlargement of the vertical surface displacement in the no-
dal region, and (c) drift velocity as a function of the angle of
inclination of the channel. The drive parameters are 5.37 Hz
and 0.54 mm.
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symmetrically about the longitudinal midpoint of the
channel. The slope of the best-fit line is 3.5 cm/sdeg.
For a magnitude of the tilt angle greater than 0.045',
and "antikink" (180' out of phase relative to the origi-
nal kink) emerges from the shallower end, and eventual-

ly inhibits the drift motion of the kink.
For surface waves of small amplitude the channel is a

resonator characterized by the number of displacement
nodes (n„,nr) perpendicular to the longitudinal and
transverse directions, respectively. The even spacing be-
tween nodes is determined by the global geometry, viz. ,
the walls. The kink, however, can occur at any location.
It can be viewed as a large-amplitude (1,1) mode in

which the transverse nodal line has become decoupled
from the end walls of the channel as a result of the flat-
tening of the profile. Similarly, a kink-antikink pair can
be viewed as a large-amplitude (2, 1) mode.

The channel is made of acrylic, and has inner width
w 5.71 cm and inner length L 76.2 cm. The data re-
ported here are for ethyl alcohol with a depth of 1't 1.00
cm in a covered channel. We have also observed kinks in

either glass or acrylic channels of half the width and
length with either alcohol or water, although a wetting
agent must be added to water. To overcome dissipation
and achieve a steady state, as well as to specify the fre-
quency of response, we oscillate the channel vertically
with a shake table. This was made by attaching an
aluminum plate to the cone of an 18-in. loudspeaker, and
using springs to oH'set the weight of the table and chan-
nel. The loudspeaker rests on a tripod which permits
careful adjusting of the angle of inclination of the chan-
nel. The angular position of a wrench attached to one of
the leveling bolts was calibrated to yield this angle. Be-
cause precise frequency control is required, a synthesizer

is used to drive the shake table. Each probe is a pair of
vertical wires separated by 4 mm, and connected to a
high-frequency (2 kHz) voltage source. The resistance
(10 MO) across the probe decreases as the level of liquid
rises. Hence, the voltage across a small series resistor
(40 kO) varies linearly with the surface height. The
high frequency is removed from this signal by a lock-in
amplifier.

We create a kink by imparting to the channel an an-
gular impulse about any vertical axis through the chan-
nel, as long as the axis is not near the end walls. The
node of the kink forms at the axis, and then gradually
drifts due to nonuniformities. A kink can be moved by
"dragging" the node with a narrow spatula that is insert-
ed parallel to the channel. Using spatulas to bring a
kink and antikink near each other, we have observed a
repulsive interaction, which is so strong that the annihi-
lation of a pair has never occurred without complete de-
struction of the cross mode. A repulsive force also exists
between a breather and antibreather. These forces are in

qualitative accord with Bernoulli's law. 2

Profiles of large- and small-amplitude kinks are shown
in Fig. 3. The data were taken with a probe parallel to
and one meniscus length (2 mm) from a wall. To obtain
the data, we constructed the cover of the channel to be
similar to a slide rule, with the probe attached to the
slide. Because the kink is sensitive to nonuniformities of
the channel, a thin isosceles-triangular block is used to
immobilize the kink for the purpose of taking the mea-
surements in Fig. 3. The block is made of acrylic, and
has height 1 mm, length 10 cm, and width equal to that
of the channel. The probe was statically calibrated at
the beginning and end of each data-gathering session.
The slope of the calibration graph was stable to + 2%
for sessions of typically 5 h.

Figure 4 is a graph of the drive-plane region in which
the kink and (1,1) mode exist. The response frequency is
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FIG. 3. Profiles of large- and small-amplitude kinks. The
points are experimental and the curves are theoretical. The
drive parameters are 5.37 Hz and 0.52 mm for the large-
amplitude case, and 5.23 Hz and 0.46 mm for the small-
amplitude case.
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FIG. 4. Drive-plane portrait. The kink and (1,1) mode exist
in the regions shown.
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precisely half the drive frequency. The drive amplitude
was measured with an accelerometer (Briiel and Kjaer
4332). Above boundary a, there appear modulations
whose wavelength roughly equals the width of the chan-
nel. Above boundary b, the node is repelled from, rather
than attracted to, the apex of the triangle. The node
drifts to a position near one end of the channel and even-

tually disappears in the end. Below boundary e the kink
decays to the rest state from a small amplitude ((0.5
mm). This boundary is the well-known threshold for
parametric excitation, which is theoretically a hyperbola
in the drive plane. The minimum in boundary c occurs
at twice the linear frequency of the (1,1) mode. We
have roughly extended the curve (dashed line) to fre-

quencies greater than this value. The datum here was
obtained by starting with the liquid at rest, imparting a
small angular impulse to the channel, and determining
the minimum drive amplitude for which the amplitude of
the wave grew. Each point of boundary d corresponds to
the common point of the stable and unstable branches of
a parametric steady-state response curve, where the am-
plitude jumps from a finite value to zero.

To theoretically describe the kink, we consider a
modulation of the fundamental cross mode of a channel
of liquid with the dimensions and coordinates as shown
in Fig. 1, where L. » w. The modulation is assumed to be
slowly varying in space and time. Qn the weakly non-
linear level, the surface height is

g(x,y, t) [gl (x,t)e'"'+c.c.]cos(ky)+ [$2(x,t)e '"'+c.c.+ (2 (x,r)]cos(2ky),

where ai is the angular frequency of the wave, and k n/w is the wave number of the cross mode. At the leading order
of secularity, the modulation amplitude gl satisfies a nonlinear Schrodinger (NLS) equation modified to include weak
linear damping and weak parametric drive of frequency 2ro:

2iro(8$/Bt)+c (t) gi/Bx )+(ro coo 2irop)( 2ro ri( I ai k if| i g 0. (2)

The linear frequency of the cross mode is ron (gkT) 'i,
where T tanh(kji) and h is the depth. The damping
parameter is P and the dimensionless drive amplitude is

ri ai a/g, where the displacement of the drive is
acos(2cot) and g is the acceleration due to gravity. The
nonlinear coefficient is I (9T —12T —3 —2T )/
8, and c (coo/k)droo/dk. The higher harmonics in the
surface displacement (1), which are generated by non-

linearities, are

k(3T —1)(i/4T,

k(1+T ) i (1 i /2T.
(3)

The value of the nonlinear coelIicient ranges from I
for kh 0 (shallow limit) to I —1 for kh ~ (deep
limit), and vanishes for kb=1.058. This crossover con-
dition corresponds to a depth of 1.92 cm for our channel.
When I (0 the free oscillations of the cross mode soften
(i.e., the frequency decreases as the amplitude is in-
creased). In this case the mode is subject to the
Benjamin-Feir instability, ' and initial disturbances
evolve into breather solitons described by hyperbolic
secants. For I )0 the free oscillations of the cross mode
harden and the mode is consequently stable. However,
there can exist a 180 kink in the phase of the mode.
The stable kink solution to the driven damped NLS
equation (2) is

(ca/cok)(2/I ) ' tanh[a(x —xo)]e ', (4)

where a (co —F00+ 2mp )/2c, tan(2b) =p/p, and

p (co ri
—p )'i2. The location xo of the node of the

kink is arbitrary as long as it is not near the end walls of
the channel. Because of the only two possible steady-
state phases consistent with a parametric drive, the
driven link is topological.
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The NLS equation (2) in the undriven undamped case
differs formally from the standard NLS equation by the
addition of the (r02 —ai02)gi term. This can be easily re-
moved by transforming gl with an exponential phase fac-
tor in time. The significance of the added term is that it
allows nonpropagating solutions, in which dissipation can
be overcome by a global drive. In the undriven un-

damped case, there exists a more general single-kink
solution to (2) that not only propagates at an arbitrary
velocity and has a spatially varying phase, but also has
an arbitrary "darkness" parameter which is simultane-
ously a measure of the phase difference between the two
domains and the minimum amplitude of the profile. As
a result of this added parameter, these solitons are called
dark solitons. The parameter continuously connects the
kink to the (0, 1) mode. Hence, unlike the damped
parametrically driven kink (4), the free kink is not topo-
logical. Dark solitons have been theoretically shown to
collide elastically, and thus are strict solitons. Propaga-
ting kinks and dark solitons have been observed in opti-
cal fibers. '

The nonpropagating kink is a limiting case of a spa-
tially periodic wave described by the elliptic function
sn(p, x) where p is the elliptic modulus. In this solution,
the tanh in (4) is replaced by sn, the amplitude is multi-
plied by [2p /(1+p )]'i, and a is multiplied by
[2/(1+p )]' . The analogous solution for the softening
case involves the cn function, and the corresponding
wave is referred to as a "cnoidal" wave. We thus refer
to the sn solution as a "snoidal" wave. We believe that
our observations are the first of snoidal waves. For a
wave with a single node at the center of a channel of
length L, the end boundary conditions uniquely deter-
mine the value of p through the relationship
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(I+p )K (p) L a/4c, where K(p) is the complete
elliptic integral of the first kind. For low amplitudes
(p =0), the sn solution reduces to the linear (1,1) mode
described by the sine function. For large amplitudes
(p = 1), the sn solution reduces to the kink (4).

To compare the experimental data in Fig. 3 to the
theory (1), (3), and (4), we determined the damping pa-
rameter P from the data of Fig. 4 and the parametric-
drive threshold condition P cori at ca too. The resul-
tant value is P 0.197 s ' (quality factor of 42). The
theoretical profile, especially for small amplitudes, is sen-
sitive to the depth of the liquid, h 1.00~0.01 cm. We
therefore varied this value over the range of uncertainty,
to achieve the best fit of the small-amplitude data in Fig.
3. The corresponding value, h 0.996 cm, was then used
for the theoretical profile of the large-amplitude case.
The small-amplitude profile has elliptic modulus

p 0.732, and the large-amplitude profile has p 0.998.
There is good agreement between the experiment and the
above theory in the small-amplitude case, but significant
deviations appear in the large-amplitude case. The solid
large-amplitude curve gives the absolute maxima and
minima according to the theory. The substantial asym-
metry here is due to nonlinearities as manifested by the
harmonic terms (3). This effect is enhanced by the shal-
low depth of the liquid, which causes the harmonic (2 to
have roughly half the amplitude of the fundamental gi in

(1). Accordingly, the motion should display an "ex-
tremum doubling" in which the minima of the funda-
mental become relative maxima. These values are shown

by the dashed curves in Fig. 3. We observe no such ex-
tremum doubling in the kink, although we have seen the
effect in some modes of the channel.

The rich structure of the nodal region [Fig. 2(b)] is
also indicative of new effects which appear beyond the
NLS approximation. For example, according to (3) and
(4) the minimum peak-to-peak amplitude should be
zero. The structure shown in Fig. 2(b) can be qualita-
tively modeled by adding a term 8 i 8/i/tix i to the ex-
pression for g2 in (3), where 8 —0.04/a A. Terms of
this form are likely to enter at higher orders of perturba-

tion. It is doubtful, however, that a calculation of these
corrections to the NLS equation will yield a satisfactory
description of the large-amplitude kinks, because (a) the
predicted extremum doubling is absent and (b) the am-
plitude of the second harmonic is comparable to that of
the fundamental. Indeed, the stability of these solitary
waves appears to be a more general property of nature
than can be inferred from interpretations based upon the
leading order, integrable (NLS), approximation to the
first principles of fluid mechanics (the Euler equation or,
when dissipation is included, the Navier-Stokes equa-
tion).
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