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Quantum Geometrodynamics of the Open Topological Membrane and String Moduli Space
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We show that by coupling a three-dimensional Chem-Simons theory to (2+1)-dimensional gravity
through an arbitrarily small F term, one can obtain integrals of conformal-field-theory amplitudes over
moduli space. The conformal anomaly appears as an induced gravitational Chem-Simons term. String-
theory amplitudes can thus be obtained from three dimensions.
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(I) Introduction. —In the past year, it has become in-

creasingly apparent that three-dimensional topological
theories can provide valuable insights into the structure
of two-dimensional conformal field theories. In particu-
lar, as Witten and others have shown, '2 the partition
functions and conformal blocks of rational conformal
field theories can be obtained from three-dimensional
Chem-Simons theories. Such topological theories may,
in turn, be viewed as the infrared limits of dynamical
three-dimensional theories, that is, theories of three-
dimensional membranes. One has a choice of philoso-
phies: one may start with a Chem-Simons theory and
introduce a higher-derivative term of the form (I/y)F
to regulate amplitudes, or one may start with a full dy-
namic theory and view the topological sector as arising in

a suitable low-energy limit.
So far, work in this field has focused on the derivation

of conformal blocks for Wess-Zumino-Novikov-Witten
(WZNW) models on surfaces with fixed complex struc-
tures. But for many physicists, the real interest in con-
formal field theory comes from its connection to string
theory, in which one integrates over the moduli space of
complex structures. The aim of this paper is to show
that such an integral over moduli is a natural outcome of
coupling a three-dimensional Chem-Simons theory to
(2+1)-dimensional gravity. Since so many two-dimen-
sional conformal field theories —including all known ra-
tional conformal field theories —arise from Chern-
Simons theory, we regard this as a step toward a three-
dimensional topological picture of strings.

(2) Complex structure in Chem Si mons theory -—Let.
M be a three-manifold with the topology [0,1]x Z, where
Z is a Riemann surface. The boundary 8([0,1]XZ) con-
sists of two copies of X; as observed by Kogan' and El-
itzur et al. , the corresponding WZNW model includes
left movers coming from one boundary component and
right movers coming from the other. Vertex operators
are naturally incorporated by including Wilson lines
which begin on one boundary and end on the other.

We begin with a paradox. The Chem-Simons action

fO
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1
gg g FabFcd ~4~~ m

(2.2)

where we eventually take y ~ to recover the pure
Chem-Simons action. We may alternatively view (2.2)
as a genuine contribution to the three-dimensional action
for a topologically massive gauge theory, the funda-
mental theory is then one of a three-dimensional mern-

is topological, independent of any metric. Yet Chern-
Simons theory on M gives rise to a WZNW model on
8M, which requires a choice of complex structure for its
description. Wave functions in the Chem-Simons theory
take the form +[A;], where Az is a boundary component
of the Chem-Simons gauge field. But such a form clear-
ly requires a metric on 8M, or at least a conformal
equivalence class of metrics, to define i.

Of course, this does not mean that Chem-Simons
theory is inconsistent. The Chem-Simons action is first
order in time derivatives, and to canonically quantize one
must choose a polarization, i.e., a specification of which
components of A are position variables and which are
momenta. Such a choice introduces a complex structure.
Equivalently, from the point of view of the path integral,
one must select appropriate boundary conditions for 3:
this again requires picking out one component whose
boundary value is given on BM. It can be shown that
the Hilbert spaces arising from different choices of polar-
ization are unitarily equivalent, and that expectation
values of Wilson lines in closed three-manifolds are in-
dependent of any such choices. If our aim is to derive
string-theory amplitudes from the Chem-Simons theory,
however, we must introduce an integration (of nonchiral
amplitudes) over complex structures; that is, we must
promote the dependence on complex structure to some-
thing of physically significance.

To do this, let us observe first that perturbative Chern-
Simons theory requires a gauge-invariant regularization
of the Chem-Simons action to define of-shell ampli-
tudes. One way to regularize (2.1) is to add a higher-
derivative term
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ds —(Ndt) +h;J(dx'+N'dt)(dxi+N dt), (2.3)

where l't;, is a metric on Z. We should therefore expect
quantum corrections to induce a (2+ 1)-dimensional
gravitational action,

fO
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brane, which has Chem-Simons theory as an effective

low-energy limit.
The action (2.2) depends explicitly on the three-metric

g,b, which in the Arnowitt-Deser-Misner formalism is

given by

In general, a gravitational Chem-Simons term

k'
S4 &abc ~+abaPe + 3 aa bP cyafj 2 P y a

8z
(2.S)

will also be induced. Here co, is the spin connection
for the metric g,b, and (2.S) can be interpreted as a
Chem-Simons term for an SO(2, 1) gauge theory with

connection co. The full action is thus S1+Sq+S3+S4,
plus higher-order terms in the curvature which should
not affect the topological (y ao) limit.

The three-metric g,b induces a two-metric, and thus a
complex structure, on Z, and we might expect this to
affect our choice of polarization. Indeed, the action
S~+S2 is now second order in time derivatives, and we

can no longer view A, and A; as canonically conjugate.
Instead, standard canonical quantization of the gauge
field on [0,1]&Z leads to a Hilbert space of functions
%'(A„A,-), with a Hamiltonian

0 N
hj z'—

yN

y
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(2.6)

where F e'F;~ and the complex structure in (2.6) is

determined by h;i. In the y ~ limit, the dominant
contribution comes from the lowest-energy eigenstates,
E 0, for which

(2.7)

Equation (2.7) is the proper form for a Chem-Simons
wave function, but now with a particular complex struc-
ture determined by g,b. The exponent determines the
correct inner product, while the dependence of 4 on A,—

corresponds to the polarization determined by the com-

plex structure z. This residual metric dependence of the
wave functions has been studied by Wen, ' who first

pointed out that the low-energy effective action is confor-
mally invariant, depending only on the complex structure
determined by h;, . The view of Chem-Simons theory as

the infrared limit of a topologically massive gauge theory
allows a simple interpretation of a number of features.
For instance, the Hamiltonain (2.6) on a torus is

equivalent to that of a particle in a constant magnetic
field; the number of Chem-Simons states is fixed by the
number of states in the first Landau level, and the quant-
ization of k comes from requiring that this number be in-

egra
0) Three dimensional geome-trodynamies We have. —

now obtained a complex structure for a WZNW model

by coupling Chem-Simons theory (through the F term)
to (2+ 1)-dimensonal gravity. Can the gravitational
path integral lead further to an integral over complex
structures? To answer this question, observe first that

the dynamics of gravity is determined completely by the
constraints: A metric which satisfies the constraint
equations at all times automatically satisfies the full field

equations. ' Since the constraints occur as b functionals
in the path integral, this means that the space over which
we integrate is precisely the space of classical solutions
with appropriate boundary values. We must therefore
ask whether there is a suitable choice of boundary condi-
tions for which the space of classical solutions gives the
moduli space of complex structures on Z.

The constraints in 2+ 1 dimensions can be written
as 13,14

(3.1)

n(~. aJh h(J (3.2)

or, equivalently, fixing the transverse traceless part of x;J
to vanish. The momentum constraints iV' =0 then deter-

where tr' Jh (K'J h'JK) is the mo—mentum conjugate
to h;J (K is the extrinsic curvature of Z). Witten's has
described one set of classical gravitational solutions
which are in one-to-one correspondence with the Teich-
miiller space of Z. These are obtained by forming the
quotient of the forward light cone in IR by a Fuchsian
ground I CSL(2,IR). Equivalently, any particular solu-
tion of this type can be specified by giving an initial
metric h;~ on X, and then imposing the condition
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mine a to be constant, and the Hamiltonian constraint
0 fixes h;i to be a constant negative curvature

metric, with R —2a . By rescaling the coordinates,
we can fix R -—1. The boundary conditions (3.2) thus

determine the set of metrics of constant curvature —1,
which are well known to parametrize the Teichmiiller

space of X.
To define the gravitational path integral, we must

specify boundary conditions which fix half of the bound-

ary data for g,b. The conditions (3.2) clearly do this, as
can be seen in more detail in the general analysis of the
canonical structure of (2+1)-dimensional gravity in

Ref. 14. The path integral then reduces to an integral
over the Teichmiiller space of metrics on Z. But as we

have already observed, this Teichmiiller space is precise-

ly the space of complex structures appearing in the
WZNW action determined from the Chem-Simons
theory (2.1).

Of course, in string theory one integrates over moduli

space, not Teichmiiller space; it is still necessary to
divide out the mapping class group of Z. This, too, can
be understood from the (2+1)-dimensional point of
view. The gravitational action (2.4) is invariant under

the entire group of diffeomorphisms of M [0,1]xZ.
The constraints generate the diffeomorphisms isotropic
to the identity, but we must still divide out the three-
dimensional mapping class group, which includes 's

diffeomorphisms of the form $1

xylo,

where So is a
Dehn twist of Z. Dividing out the three-dimensional

mapping class group of [0,1]&Z thus requires dividing

out the two-dimensional mapping class group of Z, re-

ducing our integral to one over the moduli space of Z.
Note that if we had a chosen a different topology for

M, this would no longer be the case. A handle-body

(that is, a solid genus-g surface), for instance, has as its
symmetries only a subgroup of the mapping class

group, ' and corresponding chiral WZNW model would

thus be integrated over a space larger than the genus-g
moduli space.

Although our discussion of constraints and boundary
conditions has been for pure gravity, the addition of the
Chem-Simons action (2.1) does not affect the con-

clusions, since Si does not contain the metric. The F
action (2.2) does contain g,b, of course, and will alter the
constraints (3.1). For the E 0 states, however, Fi 0,
and it is easily checked that the momentum constraint is

unaffected. The Hamiltonain constraint will be slightly

altered, so the scalar curvature 1 )R will only be constant

up to terms of order I/y; but this merely provides us with

a slightly different model for Teichmiiller space, and will

not change the final results.
(4) The gravitational Chem Simons ter-m and the

central charge. —It remains for us to consider the gravi-
tational Chem-Simons action (2.5). The Chem-Simons
gauge theory action (2.1) induces a gravitational Chern-
Simons term, whose coefficient can be calculated either
directly from the perturbation expansion' or by index

theorem arguments. " For a U(1)" Chem-Simons
theory, the coefficient is k' in/24 .For a non-Abelian
theory, general arguments suggest that the coefficient
should become k' ic/24, where e is the central charge
of the corresponding WZNW model. It would be in-

teresting to check this result directly in perturbation
theory.

In Euclidean space, (2.5) would be a Chem-Simons
term for an SO(3) gauge theory, and invariance under
large gauge transformations would require k' to be an in-

teger. For Lorentzian metrics, this is not the case
x3(SO(2, 1 ) ) 0, and there are no gauge transforma-

tions with nonzero winding numbers. But $0(2,1) con-
tains a U(1) subgroup, and it is known that the coef-
ficient of a U(1) Chem-Simons theory must also be
quantized. ' The induced gravitational Chem-Simons
term thus gives the three-dimensional version of the
two-dimensional conformal anomaly.

(5) Conclusion. —Two-dimensional conformal field
theories arise naturally from three-dimensional Chern-
Simons theories. We have now taken a step towards
showing that more is true: Full string-theory ampli-
tudes, integrated over moduli space, can arise from
three- dimensional Chem-Simons theories coupled to
gravity. It may thus be possible to reinterpret string
theory as a three-dimensional topological theory.

Of course, many questions remain. The boundary
conditions (3.2) were chosen fairly arbitrarily in order to
get the right answer. It would be interesting to see if
they arise from a higher-derivative theory in the same
way that the Chem-Simons boundary conditions

@[A;] do. We do not yet understand the b-e ghost
system of string theory from a three-dimensional point of
view; a preliminary calculation of the (2+ 1)-dimen-
sional graviational path integral seems to give no corre-
sponding Faddeev-Popov determinant. Further, the cou-
pling of gravity to the Chem-Simons theory only through
the regulator term (2.2) may not be completely satisfy-
ing, and it is important to check that our results do not

depend on the choice of regularization. But although
these questions are not yet answered, we believe there is

a reasonable chance of finding a complete three-dimen-
sional formulation of string theory.
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