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Dynamical Quasidegeneracies and Separation of Regular and Irregular Quantum Levels
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Dynamical quasidegeneracies may arise in the spectrum of systems having discrete symmetries. They
are semiclassically interpreted as quantized congruent-but-distinct tori in phase space. With them the
separation of regular and irregular states in the quantum spectrum of some mixed-phase-space systems

may be performed in a simple, yet clear fashion. At finite energies (h finite), the frontier between regu-
lar and irregular states is not sharp. This is illustrated by the study of two coupled quartic oscillators.

PACS numbers: 05.45.+b, 03.65.Ge, 03.65.Sq

The recent advances in classical mechanics regarding
the coexistence of regular and stochastic motion in low-

dimensional generic Hamiltonian systems have not yet
been fully translated insofar as the correspondence prin-
ciple is concerned. In this Letter, we partially address
this shortcoming by demonstrating the complete
classification of quantum levels in a spectrum, as con-
ceived by Percival' more than 15 years ago, in a simple,
yet precise manner. He proposed that the quantum ener-

gy levels of a system classically possessing a mixed phase
space [containing Kol'mogorov-Arnol'd-Moser (KAM)
islands and chaotic regions) should belong either to a
regular or an irregular class. To date, the attempts to
perform this identification systematically throughout a
spectrum have been inconclusive because none of the cri-
teria used, such as the behavior under a slowly changing
perturbation, were by themselves exclusive enough. Our
technique shall rest on a combination of Einstein-
Brillouin-Keller (EBK) quantization and discrete sym-
metries. We find that Percival's classification scheme
works quite well although there exist levels of a some-
what intermediate character. In fact, depending on the
nature of the dynamics at the KAM-chaos interface, the
frontier between regular and irregular states may be
difficult to define.

For some systems the discrete symmetries, when prop-
erly understood, provide the key in identifying regular

levels. They have the following effect on the classical
phase space: An invariant torus of a regular region is

transformed by the symmetry-group elements into an in-

variant torus which is congruent to the initial one and
which may or may not coincide with it. 2 In this latter
case one expects, and finds, that quantum levels corre-
sponding to torus quantization will appear as quaside-
generate doublets (multiplets in general) —an example
of what may be coined dynamical quasidegeneracies—belonging to different symmetry classes. The ex-
tremely small splittings result from what is termed
dynamical tunneling by Davis and Heller. This is the
generalization of the well-known tunneling in a one-
dimensional symmetric double-well potential (quaside-
generacies of parity doublets). Note that no potential-
energy barrier is necessary. For those systems whose in-

variant tori are all duplicated in phase space, yet do not
have global symmetries implying exact degeneracies, the
resultant quasidegeneracies provide a "filter" for the
complete set of regular levels since those levels which are
not quantized on tori do not appear quasidegenerate ex-
cept for random coincidences (assuming a single
significant chaotic region). This filter is made even more
stringent by realizing that EBK (torus) quantization re-
sults in the regular levels appearing locally as though
they fit into a series of nearly uniform (harmonic-
oscillator-like) subspectra. The occasional fake quaside-
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S pdq=rJ|+sJ2 sJ (1)4 orbit

This gives J and a through a=r/s From f. , one then
deduces the curve g~. Although the function g~ is,
strictly speaking, generally (in nonintegrable cases) no-
where continuous, this calculation provides a smoothed

g except where there exist large resonances which show

up as gaps in the curves J f (a) and J2 g (Jl).
The gist of the semiclassical quantization rules for the

spectrum is to construct, in the (J|,J2) space, the one-
parameter family g for the energy range of interest.
Then, the Bohr-Sommerfeld conditions imply that when

E is such that the curve g lies on a point of the grid

Jl 2nh(n (+ l (/4)

J 2nh(n +li/4) (n (,n2-0, 1,2, . . . )

[where (ll, l2) are Maslov indicesl, then E=E„,„, is a
quantum eigenenergy with quantum number nl, n2.

The system we investigate is governed by the Hamil-
tonian

H(q, p;X,b) - —,
' (p(+p22)

generacy almost never fits into one of these sequences.
The great simplicity of this method is that it does not

rely at all on the eigenfunctions or statistical assump-
tions about their morphology.

Let us first briefly describe what is expected on the
basis of standard EBK quantization. As is well known,
the EBK scheme can only be performed when there exist
invariant tori. For two-degrees-of-freedom systems each
torus is specified by the values of its actions jJi,J2j and
usually one chooses J~ as the area interior to the inter-
section of the torus with a Poincare section. If one re-
stricts one's attention to a single KAM island at fixed en-

ergy E, J2 can be expressed as a function of Ji..
J2 g (Jl). However, the actions jJ|,J2j are not direct-
ly accessible by classical propagation of trajectories.
It is thus convenient to first introduce the function
J f (a), where a is the winding number of the torus
(J~, J2 g (J ~ )), and J J2+aJ l. J can be interpreted
as the action integral along a trajectory between two suc-
cessive intersections of a Poincare section 82 const
at energy E (e~, 82 are the angle variables associated
with the actions J|,J2). It is easily shown that
a —dg /dJ|. The transformation from g to f (and
the reverse) is therefore a Legendre transformation.

To construct f, one follows an orbit many times
around the torus until it nearly closes on itself while

counting the number of times jr,sj it has traveled
around the primitive cycles corresponding to the actions
jJ|,J2j. This is easily done by numerically integrating
and watching the Poincare section. The action integral
along the orbit may then be written approximately as a
linear combination of [J|,J2j,

The multiplicative factor a(k) )0 is there for conveni-

ence, b is chosen near but different from 1, reducing the
symmetry from C4,, to C2,, (thus no exact degeneracies
are expected), and the coupling parameter A, ) 1 deter-
mines the relative degree of regular to stochastic motion.
This 8, previously investigated by several authors, is

well suited here for several reasons. (i) k may be chosen
such that a considerable fraction of phase space is

covered with resonant tori all of which are duplicated.
(ii) The symmetries are simple, time-reversal and q~, q2
reflections, so there are four representations labeled by
(el, e2)(e; ~ 1, i 1,2). (iii) The classical study can
be performed at a single energy (which we do at En =1)
since all actions S and periods T scale as (the dynamics
are otherwise unchanged) S (E/Eo) l S, T

(E/Eo) '~ T (rescaled quantities are denoted by a 0
superscript). One main consequence is that, since

g (Jl) E l g (E l Jl), it is sufficient to construct
only the curve g to obtain the one-parameter family g .
(iv) Long accurate spectral sequences are obtainable
(20000-30000 levels) with errors (10 of a mean

spacing D (this we find by calculating an upper and
lower bound on each level).

It is sometimes convenient to reexpress the quantiza-
tion conditions (2) in terms of fa,Jj. Using (1) and (2)
for this system,

E„',„, (2nh/J, „,)t(n2+1)+~(ni+ i )]

which is not a harmonic-oscillator spectrum because
there is an outer edge, Jl (max), to the KAM islands and

{a,J j are not constant. Usually, however, J varies lit-
tle for resonant KAM islands and so

(5)

is locally approximately constant in E l . Therefore,
long uniform sequences of quasidoublets (going to
infinite energy) found by changing n2 will appear in the
spectrum considered. For the rescaled tori (to an energy
surface E 1, say), increasing n2 (nl fixed) is associated
with moving toward the center of the KAM island and
the energy splittings tend to zero (though not necessarily
uniformly). Increasing n~ (n2 fixed) does the opposite
and the sequences cut ofl' in n~ as one exits from the
KAM island.

From which sequences the quasidegenerate levels are
found depends on the symmetry properties of the tori.
With the convenient choice (X,b) ( —0.35,n/4), 12% of
the phase space is covered by KAM islands and each of
the quantizing tori, to an energy of approximately the
22000th state, has only one duplicate. They all reside in

one of four main islands; see Fig. 1. One element of the
reflections jP~, Pq, PiP2j leaves the tori of a given island
invariant. Thus, for a given torus associated with a wave

function +, among the four functions

+a(Z) (q'/b+ 2kq 'q '+ bq') . (3) e„„-—,
' (1+~,P, )(1+~,P,)~, (6)
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FIG. l. (a) Poincare section qi 0 for (1j.,b) ( —0.35,xl4)
showing the different KAM islands. (b) Enlarged view of the
largest KAM island (island I).
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TABLE I. Symmetries of quasidoublets (see Fig. 1).

Island

1,1'

2, 2'

3,3'

4,4'

nq even

(++),(- —)
(++ ),(+ —)

(++),( —+)

np odd Symmetry

PIPP
Pl

Pp

which belongs to states labeled by (t. l, cq), two are
nonzero and associated with quasidegeneracies and the
two remaining ones vanish; see Table I.

The first step in the analysis of the quantum levels is
to compare two symmetry-related spectra, searching for
all quasidegeneracies. From this list of candidates,
fixed-n

1 sequences are constructed. One finds that
almost all of the best quasidegeneracies, splittings
—10 D to —10 D, do reside in sequences. The
quantum number assignments are then relatively
straightforward to make even without constructing the
curve g, since the ni 0 sequence comes lowest in the
spectrum, then ni 1, etc. , and usually only one integer
nq gives a value of Jq in the right range. Next, a
quantum-derived curve gq is constructed via the com-
puted quantum energies, the scaling relations, and the
quantization conditions. The classical and quantum re-
sults for island I are given in Fig. 2. We find that (i) the
two curves coincide to a very high precision where the
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0 0.2 0.4 0.6 O.S ) 0 1

FIG. 2. Regular states in island I (see Fig. 1). (a) Plo«&f
the curve fo relating Jo and a. (b) Curve g relating the
scaled actions Jt and J); (a) and (b) come from the classical
motion. (c) Curve gqo obtained from the quantum spectrum.

classical one is defined, (ii) the quantum curve interpo-
lates through the gaps, and (iii) the quantum curve ex-
trapolates beyond the edge of the island Jl (max) 0.37.
Remark (i) is not surprising, nor is (ii) when h, is too
large to resolve the resonant structures (the —', resonance
is an exception here [Fig. 1(b)], which will be treated
elsewhere ); remark (iii), however, deserves further
comment.

Up to J| 0.40 the continuation of g quantum
mechanically by gq~ is almost perfect. One expects to
find exactly 1112 quasidoublets and 1088 are found with
quantum number assignments. Beyond 0.40 one still lo-
cates 202 quasidoublets with sometimes dubious quan-
tum number assignments. They rather gently continue
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FIG. 3. Quantum numbers ni, n 2of the regular states
identified in and around island 1 as quasidoublets among the
first =22000 levels. The straight line locates the border of the
KAM island. The lower right represents the exterior.

the curve g but their splittings tend to be larger and

they no longer form (almost) complete sequences (for in-

stance, for 0.40( Ji ~ 0.50 one finds only 103 quasi-
doublets instead of 271). What happens is further illus-

trated in Fig. 3, where the points which give rise to
identified quasidoublets on the grid (nl, n2) are plotted.
One sees that the quasidoublets on the lower right have

extended beyond the classical boundary. The regular-
chaotic interface is such that the regular region, as
"viewed" quantum mechanically, is larger than the clas-
sical regular region. But this is not always so. For the
case of islands 2, 3, and 4 [see Fig. 1(a)], for instance,
the opposite happens; fewer quasidoublets than expected
semiclassically can be identified. In fact, depending on

the nature of the regular-chaotic interface as described

by classical dynamics (i.e., fast mixing beyond the bor-
der or, on the opposite extreme, presence of partial bar-
riers), reduction or extension of the signatures of regu-

larity interior to or beyond the boundary may result.
To conclude, let us start by emphasizing that

Percival's scheme works well. Only a few percent of the
levels appear to be of an intermediate nature and EBK
works remarkably well as a guide. Despite this, one
could not necessarily select eigenvalues based solely on

the quantized energies derived from g because of ambi-

guities with close-lying levels and displacements due to
tunneling. The dynamical quasidegeneracies are essen-
tial. Furthermore, their existence, resulting from a con-

spiracy of discrete symmetries and classical dynamics
(structure of phase space showing different congruent

tori) is not exceptional but, on the contrary, rather con-
spicuous and they may exist in regular as well as mixed
systems. Examples are provided by models of the H20
molecule, ' the H2+ molecule (regular system), the el-

liptic billiard (regular system), the Henon-Heiles poten-
tial (mixed system), and the hydrogen atom in a con-
stant magnetic field (mixed system). ' A distinctive
feature of the quasidegeneracies, in contrast to statisti-
cally expected near degeneracies, is that even when vary-

ing a parameter over large ranges (the X, coupling in our
case) they persist, at differing energies, as long as the
classical dynamics still preserves the existence of the tori
on which they are built. The splittings of the quaside-
generacies (dynamical tunneling) are ideally suited for
studies of tunneling in the presence of chaos, a subject
still in its infancy. " For systems showing scaling prop-
erties, as the coupled quartic oscillator case, one can
study the approach to the semiclassical limit without am-

biguities, using the fact that each rescaled torus quan-
tizes an infinite number of times, giving rise to an infinite
sequence of dynamical quasidegeneracies. Work along
these lines is in progress.
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