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Asymmetric Neural Networks Incorporating the Dale Hypothesis and Noise-Driven Chaos
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Dynamical properties of the neural networks with asymmetrical synaptic couplings respecting the Dale
hypothesis are studied. The time evolution of the networks is assumed to obey stochastic dynamics of
the Little type with time delay. Using a nonlinear master equation, exact equations are derived for the
time evolution of the overlaps of instantaneous configuration with p embedded patterns and with the
characteristic pattern representing the configuration of excitatory and inhibitory neurons. It is shown

that the networks exhibit noise-driven chaotic motions in the retrieval process.

PACS numbers: 87.10.+e, 02.50.+s, 05.45.+b, 89.70.+c

Studying asymmetric neural networks' is of biologi-
cal importance since the synaptic couplings are in gen-
eral asymmetric in physiological nervous systems like the
brain, while we have only a little knowledge of the rules
which govern the formation of the synaptic couplings in

physiological nervous systems. Among such rules, it is

generally known as the Dale hypothesis that in physio-
logical nervous systems excitation and inhibition are as-
signed to diA'erent sets of neurons, that is, each neuron
has a unique excitatory or inhibitory character. It will

be important to examine the functions of the rule in the
global network performances of physiological nervous

systems.
In this paper, we study the retrieval dynamics of the

model neural networks with asymmetric couplings which

incorporate the Dale hypothesis in the scheme of the
Hebb learning rule. In connection with the introduction
of the Dale hypothesis, we incorporate another neuro-
physiological aspect, i.e., the time delay, into the model-

ing of the network dynamics which we assume to take
the form of Little's model with a finite number of em-

bedded patterns. We have found an interesting result
that the present simple model has parameter regions in

which it exhibits chaos. " Our model and the analysis
yield a theoretically rigorous way to study complicated
motions like chaos in the neural networks with the phy-
siological constraint.

Appearance of the chaotic behavior was also observed
experimentally in physiological nervous systems. Chaot-
ic behavior was first found in the responses of action po-
tential of a single neuron under periodic stimuli. '

Furthermore, recently Freeman observed chaotic
responses of action potential for the olfactory bulb of a
rabbit when the unreinforced odor is given as a
stimulus. ' He suggested that the chaotic responses play
essential roles awhile the learning of new odor takes place.
At this stage of the neurophysiology, it will be useful to
present a simple neural-network model based on physio-
logical constraints and to show the appearance of chaotic
memory retrieval through theoretically rigorous treat-

ment.
We consider the following learning rule of patterns

+' lj (i 1, . . . , N, p I, . . . ,p) to generate the

synaptic couplings obeying the Dale hypothesis:

Pv((N)g(v) e(tv~ 1 +q ((P)((v)1

N„,,
i j 1, . . . , N,

where 8„„is a real p xp matrix satisfying 8„,» 0 and g~

is +1 ( —1) if the jth neuron is excitatory (inhibitory).
We call lrilj the characteristic pattern hereafter since it
represents the pattern of the configuration of excitatory
and inhibitor~ neurons in the neural networks. Since ega"

vanishes if g;")g~' has an opposite sign to rij, the learn-

ing of the patterns by the synaptic couplings takes place
only when g,(")g~~") has an allowed sign by the excitatory
or the inhibitory character of the jth neuron. Thus the
couplings given by Eq. (1) respect the Dale hypothesis.
In general, the couplings become asymmetric even if the
matrix A„„is symmetric. However, the degree of asym-

metry is small in such cases and we can introduce larger
asymmetry by choosing an asymmetric matrix for A„„.

The couplings defined in Eq. (I) can be written in the
following simple form if we substitute the expression of
e,j" into the definition of J~l: J~I (I/N)g„„A„,g;" (J"
+ (1/N) ril g„,A„,. Note that the coul)lings depend
linearly on the pattern frill as well as jgj(' j. As we will

see later, this linearity of the couplings enables us to
derive a self-consistent mapping for p+1 pattern over-

laps from a nonlinear master equation for 2 +' probabil-
ities' [see Eqs. (4) and (5)j.

In designing the dynamics, which keeps the relation to
the physiological nervous systems, we take account of the
time delay' originating from the synaptic delays and/or
the slow components of response in the definition of the
local field h;(t) representing the total synaptic input to
the ith neuron at time t Then h.;(t) amounts to a
weighted average over the histories of the neural activi-
ties and is given by h;(t)-Q, J;,&, (t) Here, with.
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[S;(-~1)j representing the macroscopic state of the
neural network, V, (t) L -OK(u)S, (t —u) is the time-
averaged output of the jth neuron with a suitable weight
K(u) )0.

We now consider the network dynamics to be a non-
Markovian stochastic dynamics which formally assumes
the form of Little's model. To be specific, the dynamics
is described by the conditional probability of finding the
ith neuron in state a at time t + I, given that microscopic
states of the system at time r (( t) are {S;(r)j:

P(S;(t+1)}-ai [S;(r)j,r(t)
—,
' jl+o tanh[Ph;(t)]j .

In the present Letter, we deal with the simplest case for
the time delay and set K(u) b„o+kb'„ l (k ~ 0). The
parameter P represents a measure of inverse magnitude
of external noise rather than the inverse physical temper-
ature of the neural networks. It is, however, referred to
as "inverse temperature" of neural networks throughout
this paper in analogy with thermodynamical spin sys-
tems.

From the expression of J;i, the effective local fields
turn out to be described in terms of the overlaps m 0)

=(I/N)g; rt;S; of microscopic states at time t and t —
1

with the characteristic pattern [rt;j representing the con-
figuration of excitatory and inhibitory neurons, as well as
the overlaps m(")—= (1/N)Z;g;" S; with the embedded
patterns [&(")j:

p(t+1;X) —,
' [I+tanh[Ph(x, t)]j,

where

(4)

motions of the pattern overlaps. Note that in the discus-
sion below the embedded patterns need not be random
patterns but can be an arbitrary set of patterns. We first
divide the system of N neurons into at most 2p+' sublat-
tices Q(X) (Refs. 3 and 14) according to the p embed-
ded patterns and the characteristic pattern:

tI(x) [t I
g(l) —(()) g(p) ((p) q qj

where the p+1 vector X (g '), . . . , g p, ri) is defined
in the (p+1)-dimensional hypercube HP+' of ~ 1 coor-
dinates. Then, we define the rate of appearance r(X)
of the vector X as r(X) lim)v i Q(X) i/N, with

i 0 (X) i denoting the number of elements of 0 (X).
Next, noting that the law of large number holds in the

present system, we define, in the thermodynamical limit
N ~, the empirical probability p(t;X) of finding +1
state at time t for the neurons in the sublattice Q(X) as
the large-N limit of the ratio to i A(X) i of the number
of neurons with S; + 1 at time t in 0 (X):

i bi ~ o(X),S, (t) =Iji
in(x) i

Then, we can readily obtain, in the thermodynamical
limit, a one-body nonlinear master equations for the time
evolution of p(t;X) from Eq. (2):

h;(t) gA„g "'[m ' (t)+km "(t—1)]
)M V

++A„„[m (t)+km (t —1)] . (3)

h(X, t) gA„g " [m ' (t)+km ' (t —1)]
PV

+ +A„„[m ' '(t)+ km ' '(t —1)] .

We may say that specifying excitatory or inhibitory
character for each neuron can be interpreted as embed-

ding an extra pattern [ri;j in the present neural networks.
Accordingly the macroscopic dynamics of the pattern
overlaps are now described in a (p+ I )-dimensional con-
figuration space rather than in a p-dimensional one.

Let us formulate explicitly the mapping describing the

In the thermodynamical limit, the overlaps can be ex-
pressed in terms of the p(t;X) as m " (t) =gxr(X)
xg(" [2p(t;X) —1] and m( )(t) =gxr(X)rt[2p(t;X)
—I]. Now, we can easily obtain a self-consistent non-
linear mapping describing the time evolution of the over-

laps in a (p+1)-dimensional configuration space by us-

ing Eq. (4) describing the time evolution of 2p+' proba-
bilities p(t;X):

m" (t+1) g r(x)g "'tanh p gA, „g
' [m(")(t)+km "'(t —I)]+/A, „[m(0)(t)+km(0)(t —1)]

X ~ Hp+' , ay ay

p 1 y ~ ~ ~ y p

m"'(t+ I)- g r(x) rt tanh P gA. „&"[m'"'(t)+km '"'(t —I)]++A.„[m "'(t)+km ")(t—1)]
'

x E Hp+' , ay ay

(5)

We see that specifying an excitatory or inhibitory char-
acter for each neuron in the present learning scheme re-
sults in the increase of the dimension of the mapping by
1. Owing to the reduction of the number of dynamical
variables from 2 +' to p+1, the analysis of the macro-
scopic dynamics (5) is much easier than that of Eq. (4).

In the present paper, we assume that [(;" I and [ri;j
are independently specified: r(X) r(()r(rt), r(rt=l)

I r, . Then, the summatio—ns over rt are taken in Eq. (5)
to yield a trivial factor of 1 for the right-hand side of the
first equation and 2r, —1 for that of the second.

We are interested in the behavior of the nonlinear

mapping (5) in various parameter regions. We note that
m is 0 at an arbitrary instant when r, =

2 and is

eff'ectively decoupled from the other variables. Then, the
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remaining mapping for m t") s in Eq. (5) coincides with

(discrete-time version of) that obtained in Ref. 3, in

which the Dale hypothesis is not taken into account.
Therefore the nontrivial effects of incorporating the Dale
hypothesis can be seen only when the two types of neu-
rons are not balanced in number in the case that f(;" 1

and fr);1 are independently specified.
In the high-temperature limit P 0, the right-hand

sides of Eq. (5) are approximately linear in m " 's and
m(o) and the successive images of the mapping end up
with a trivial fixed point m 0, which is a natural conse-
quence of an infinitely large amount of thermal noise. i

On the other hand, in the low-temperature limit P
the hyperbolic tangent functions turn into the sign func-
tions and the attractors of the mapping are at most limit
cycles since the finiteness of p implies that the overlaps
are allowed to take their values only in a set of finite ele-
ments. At the intermediate temperatures, the system is

expected to show complicated behavior even when p is
small.

We have conducted numerical simulations of Eq. (5)
to explore the temperature dependence of the dynamical
behavior of the pattern overlaps, assuming, for simplici-

ty, that only two inde%pendent patterns are embedded
[i.e., p 2, r(() r(g(' )r(g(2))]. We have found that
there exist the parameter regions in which the system ex-
hibits chaotic behavior.

We depict two examples of the chaotic attractors ex-
hibited by the network systems with k 0.8 and r, (0.5
(i.e., the network is dominated by inhibitory neurons).

Figure 1 shows the projected phase portrait in the m '-
m plane for the chaotic motion (A ~ ~ A ~2-822 = I,2)

A2~ 0, r, 0.23, P 2.9). Figure 2 displays another ex-

ample of the chaotic retrieval (A ~ ~ 322 =1, A ~2 =4,
&2~ 0, r, 0.24, p 2.95) in which the retrieval trajec-
tory becomes narrow in the m direction since the re-
trieval motion towards fg; I always switches over that
towards f(;' }, owing to the larger value of the off-

diagonal element 2~2. Chaotic behavior of nonlinear
dynamical systems is studied by measuring the irregular-
ity of the deterministic motions. Positivity of the larg-
est Lyapunov exponent, which measures the sensitivity to
initial conditions, is the very evidence of the chaotic
motions. The largest Lyapunov exponents have been cal-
culated to be 0.07 and 0.26 for the chaotic attractors
shown in Figs. 1 and 2, respectively, through 10 itera-
tions of Eq. (5). The chaotic motions are also indicated

by the appearance of broad noise in the power spectrum,
an example of which is given in Fig. 3 for the chaotic at-
tractor shown in Fig. 2.

We have found that as P is decreased from infinity, the

system undergoes successively several types of bifurca-
tions including the Ruelle-Takens-Newhouse route to
chaos as well as the intermittency route, until it exhibits
relaxation motions towards a trivial fixed point m -0 at
sufficiently small P. Since, as previously noted, the
chaotic behavior in our neural-network systems mani-

fests itself only at the intermediate temperature, i.e.,
only in the presence of finite magnitude of the external
noise, we refer to such chaos as noise-driven chaos.

Without our numerical studies with P varied, we have

observed that chaotic motions hardly appear when exci-
tatory neurons dominate in the neural networks. Parisi
suggested' that the inhibition may be responsible for
driving the system's motions into chaotic ones in neural
networks with random couplings. Our analysis, which is

based on the properly learned synaptic couplings accord-

ing to the Dale hypothesis and on a theoretically unam-

biguous method, supports this observation.

0

0

FIG. 1. Chaotic attractor at P 2.9 for r, 0.23 is shown by
the projected phase portrait in the m "'-m "' plane [10' itera-
tions of the map (5)l. The parameters are r(g"' 1) 0.2,
r(g"'-1) 0.8, A/I +12 A?p 1, A2~ 0, and k 0.8. The
largest Lyapunov exponent has been numerically calculated to
be 0.07. The chaotic attractor shown here has been found to
coexist with a torus 1 to which a trajectory starting with dif-
ferent initial conditions settles in.

-1 m"'

FIG. 2. Chaotic attractor at P 2.95 for r, 0.24 (10'
iterations) when the oA'-diagonal element 3 ~2 is comparatively
large. The parameters are r(("' 1) 0.3, r(('2' 1) 0.7,
~ l I ~22 I, 8 iz 4, &21 0, and k O.S. The largest
Lyapunov exponent is 0.26.
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encourage us to study further their inherent roles in or-
der to understand the meanings and functions of chaos in
the global activities of the physiological nervous systems.
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FIG. 3. The power spectrum of the chaotic motion shown in

Fig. 2 which is obtained from the fast Fourier transform of the
time series of 8192 points of the pattern overlap m "'(t):

1
T-1 2

P(tv) g m"'(t)exp( —it0t)
t 0

with at 2ttn/T (T 8192, n is an integer). The continuous
spectrum indicates chaotic behavior of the retrieval dynamics.

In summary, by undertaking a systematic approach
based on the nonlinear master equation to the analysis of
the dynamical behavior of asymmetric neural networks
with the physiological Dale hypothesis taken into ac-
count, we have found that the noise-driven chaos can
manifest itself under the simple non-Markovian dynam-
ics of the Little type governing the networks with a finite
number of embedded patterns. To our knowledge, the
occurrence of chaos is observed for the first time in asso
ciative neural networks with a ftnite number of embed
ded patterns The resu.lts may suggest the nontriviality
of the Dale hypothesis as well as the effect of noise and
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