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Spin Correlations of 2D Quantum Antiferromagnet at Low Temperatures
and a Direct Comparison with Neutron-Scattering Experiments
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Correlation functions of the spin- 2 2D Heisenberg antiferromagnet at low temperatures are comput-
ed via a large-scale Monte Carlo simulation on 128X128 lattices. The correlation length is found to be
accurately described by the exponentially divergent form typical of classical Heisenberg spins in two di-
mensions. The large correlation lengths measured are directly compared with the neutron-scattering ex-
periments on La2Cu04. The excellent fit provides a first-principles determination of the exchange cou-
pling: J 1450+ 30 K.

PACS numbers: 75.10.Jm, 74.70.Hk, 75.40.Mg

The discovery of high-T, superconductors' has
brought about a resurgence of interest in two-dimen-
sional (2D) quantum antiferromagnets. This follows
from both theoretical and experimental ' indications
that spin fluctuations play a significant role in the new

mechanism for the high-T, superconductivity. The un-

doped compound La2Cu04 exhibits a rich magnetic
structure, which is considered to be well modeled by the
spin- —, antiferromagnetic Heisenberg model (AFHM):

H JQS; Sj,
&,ij )

where (ij) goes over all the nearest-neighbor pairs on the
square lattice and S; is the spin operator. The energy
scale of the system is set by the exchange coupling J.

A considerable amount of work has been devoted to
the study of this model. It is difficult to capture the
highly quantum nature of spin- 2 magnets. Analytic
studies based upon perturbative expansions have made
important progress, but so far crucial tests are still
lacking. Given enough computing power, numerical
methods can provide reliable quantitative results. In
particular, finite-temperature Monte Carlo methods have
been successfully applied to study the thermodynamic
properties. '

A key insight into the physics can be obtained by
studying the spin-correlation function. These functions
are very difficult to measure in the interesting low-

temperature limit. Manousakis and Salvador'' (MS) in-

vestigated correlation functions of the AFHM on lattices
(~20X20) by using the Handscomb Monte Carlo
method and found that the measured correlation lengths
are better fitted by an expression of the Kosterlitz-
Thouless (KT) form, which suggests a phase transition
induced by topological defects. Gomez-Santos, Joanno-
poulos, and Negele (GJN) employed an improved vari-
ant of the same algorithm, which explores the phase
space more efficiently. They measured correlation
lengths more accurately, and their results are consistent
with the quantum-renormalized classical picture. No

evidence of a KT transition was found.
The conAicting signals from these two works may be

attributed to the modest range of the correlation lengths
measured (from 1 to 4), which is not sufficient to draw
quantitative conclusions, since the essential feature of
the exponential growth of the correlation length is not
evident.

In this Letter we report a systematic study of the
Heisenberg antiferromagnet at low temperatures, in or-
der to provide a clear picture of the behavior of the
correlation function and to provide a direct, quantitative
comparison between the Heisenberg model and the ex-
periments on the LaqCu04 compound.

We have developed a very efficient Monte Carlo algo-
rithm following the Suzuki-Trotter approach. ' Because
of algorithmic advances and usage of a parallel super-
computer, we were able to simulate lattices up to 128
X 128 sites at low temperatures with very high statistics.
We give a brief account of the algorithm and the simula-
tion. The details will be reported in Ref. 13. The parti-
tion function can be rewritten as

Z=Tre PH=Tr(e P )m

1' T ( PH atm —
P H2tlm PH&—/m PH4tm) m

—
(2—)

m

~here P=l/T and H=Hi+H2+H3+H4 is a '"bond-

type" breakup' as shown in Fig. 1. In contrast to the
most commonly used "cell-type" breakup, ' ' ' which
leads to eight-spin interactions, the bond-type breakup
we use leads to four-spin interactions. This simpler spin
interaction has significant advantages in our multispin

coding scheme. The Trotter number m is set to a large
integer in a simulation.

After inserting complete sets of states (eigenstates of
S;), the partition function breaks down into products of
Boltzmann factors associated with interacting four-spin
plaquettes:

(3)

where t labels the 4m time slices. This becomes a classi-
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FIG. 1. The bond-type breakup of the Hamiltonian: In the
x direction, Hl includes bonds indicated by the solid link; H3,
by the broken link. Similarly for H2 and H& in the y direction.

cal spin system of general Ising type in 2+1 dimensions.
It is then integrated by importance sampling using the
standard Metropolis Monte Carlo algorithm. Periodic
boundary conditions are imposed in all directions to
preserve the translation invariance and to satisfy the
trace requirement.

We have designed a set of four elementary updates'3
that can generate all possible spin configurations. Two
types of local moves may locally change the spin con-
figurations. A global move in the t direction changes the
magnetization, while another global move in spatial
directions changes the winding numbers.

We implemented a simple and very efficient multispin
coding method by packing spin lines in the time direction
into 32-bit words. Local updates are vectorized. The
program runs on a parallel computer by partitioning the
3D lattice into a ring of processor nodes. The local in-

teraction in the system allowed for an efficient paralleli-
zation. Parallelism is also achieved by running several
independent lattices at the same time. The efficiency of
the program is over 90%.

We performed high-statistics simulations on lattice
sizes 32x32, 64&64, 96&96, and 128X128 at TjJ=1.0,
0.75, 0.60, 0.50, 0.45, 0.35, 0.30, and 0.27. At low T, we

used a very large m =48, which leads to a rather large
(2+ 1)-dimensional spin system: 128 x 128 x 192. We
did several sufficiently long runs at every T. For in-
stance, on the 128X128 lattice we did two independent
runs, each of 298000 sweeps. The details are summa-
rized in Table I. Finite-size effects in our calculation are
very small, since we increase the lattice size to satisfy
L ~ 6( at every T.

We emphasize that the only systematic error in our re-
sults is due to the finite value of d, r=1/mT. However,
this error is well under control. First, we choose m large
enough to keep hr ~ 0.07. Second, the error is of the or-
der of (hr) and is independent of volume because the
error terms are proportional to the commutators between
H;. ' '"' At T=O 45J, .we performed a leading-order
(hr) extrapolation using the data obtained with m =16,
24, and 32. The extrapolated values agree with those of
m=32 well within the statistical errors. In addition, as
shown in Table I, at T 0.35J on 64&64 and at T=0.3J
on 96x96, we did two simulations: one with m 24 and
the other with m =48. The differences between calculat-
ed correlation lengths are well within statistical errors.

We measured thermodynamic quantities such as ener-

gy, specific heat, etc. , and will report them in Ref. 13.
Our main focus is to compute the staggered spin-spin
correlation function

C(r) =(—1)"+",g(S„'S„',& (4)
n

at integer distances, where the factor 4 is introduced so
that C(0) 1 and L is the linear size of the system. At
larger r, C(r) has the asymptotic form

C (.) =~r 'e- (s)
where g is the correlation length and l is the exponent
that governs the algebraic part of the correlation func-
tion. To incorporate the periodic boundary effects, we fit
C(r) to CL (r) =C (r) +C (L r). The co—rrelation
functions at several T are plotted in Fig. 2 along with the
best fits. Clearly, the fits are excellent. The results of

TABLE I. Trotter number, lattice size, number of sweeps, correlation length, and algebraic
exponent at various temperatures.

Temperature

1.0
0.75
0.6
0.5
0.45
0.4
0.35
0.35
0.3
0.3
0.27

16
24
24
32

16,24,32
40
24
48
24
48
48

Size

32x 32
32x 32
32x 32
32x 32
32x 32
64x 64
64x 64
64x 64
96x 96
96x 96

128 x 128

Runs x
sweeps

4 x 100000
4 x 80000
4x 5pppp
2 x 50000
2 x 130000
4 x 80000
4 x 160000
4 x 130000
4 x 350000
4 x 224000
2 x 298000

0.968(2)
1.44(2)
2.2O(4)
3.5(1)
4.6(2)
6.s(2)
9.9 (4)

io. i(s)
is.o(s)
i 7.s(s)
28.0(1.2)

0.36(22)
0.46(9)
0.47 (3)
0.51(3)
0.46(5)
0.47 (4)
0.44(6)
0.36(S)
0.38 (2)
0.40(2)
O.39(2)
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FIG. 4. Inverse correlation length of La2Cu04 measured in
neutron-scattering experiments (Ref. 3), denoted by crosses,
and those measured in our simulation, denoted by squares
[units in (1.178 A) 'l. J 1450 K. At T= 500 K, La2cu04
undergoes a structural transition.

It is important to compare with other estimates of J.
Raman scattering on these materials exhibits a peak
around 3000 cm '. From magnon pairing theory, Lyons
and co-workers ' estimated J=1000 cm ' (or 1400
K). Various moments of the Raman spectrum can be
calculated using series expansions. ' By comparing
with experiment, Singh et al. ' estimated J=1030~50
cm ' (1480 ~ 70 K). The fact that their estimate is so
close to our determination is quite significant. Raman
scattering probes the short-wavelength region, where
neutron scattering measures the long-range correlations.
The agreement of J's obtained from these two rather
different experiments is another strong indication that
the magnetic interactions are dominated by the nearest-
neighbor Heisenberg model.

In conclusion, by accurately measuring the correlation
functions at low temperatures, we found that the 2D
quantum antiferromagnet behaves essentially like a clas-
sical system, in good agreement with Refs. 6 and 7.

points fall within this region, so a direct comparison can
be made. The correlation length in our simulation is
measured in units of the lattice spacing. The spacing be-
tween Cu atoms in a copper-oxygen plane is aH =3.78 A.
The only unknown parameter in our calculation is the
exchange coupling, J, which should be set to the correct
value. Setting J=1450 K, in Fig. 4 we plot our data
along with those from experiment. The agreement is ex-
cellent. This provides strong evidence that the essential
magnetic behavior is captured by the Heisenberg model.
We emphasize that our simulation is an accurate first-
principles calculation, with all possible sources of error
under control. Comparing directly with the experiment,
we provide an independent determination of the effective
exchange coupling:

J=1450+ 30 K .

Direct comparison with the data from neutron-scattering
experiments is excellent. This confirms that the magnet-
ic properties of the insulating phase of La2Cu04 above
the 3D Neel ordering temperature are well described by
the nearest-neighbor Heisenberg model, and thus leads
to a direct determination of the effective exchange cou-
pling: J=1450+ 30 K.
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