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Incommensurate Antiferromagnetism in the Two-Dimensional Hubbard Model
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The magnetic states occurring in the two-dimensional Hubbard model in the vicinity of half filling of
the conduction band are studied in the case of weak correlations, using Hartree-Fock theory. It is shown
that at zero temperature the commensurate antiferromagnetic state is unstable against domain-wall for-
mation for arbitrarily small deviations from half filling. The resulting incommensurate antiferromagnet
remains initially insulating. The predictions of the model for the polarization and modulation wave vec-
tor of the incommensurate antiferromagnet are discussed.

PACS numbers: 75.10.Lp, 75.25.+z, 75.30.Fv

One of the most interesting properties of the copper-
oxide-based high-T. superconductors’? is the close
proximity of insulating antiferromagnetic** and super-
conducting phases: Fairly small compositional changes
transform an insulating antiferromagnet into a supercon-
ductor. The insulating and magnetic properties can be
explained by the effects of Coulomb repulsion in a half-
filled band (e.g., one electron per site), whereas super-
conductivity typically occurs slightly away from half
filling. A model containing the basic ingredients for the
transition from an insulating antiferromagnet to a metal
(and possibly a superconductor) is the two-dimensional
Hubbard model.® For exactly one electron per site, i.e.,
a half-filled band, it is by now rather clear that this mod-
el has a two-sublattice (commensurate) antiferromagnet-
ic ground state. Considerable effort has been devoted to
the understanding of the effect of small deviations from
half filling.®'® In most of these investigations it is as-
sumed that the extra holes move in an essentially un-
changed commensurate antiferromagnetic background
and form a band of mobile carriers. Here I will show
that, at least for relatively weak Coulomb repulsion, any
finite concentration of holes changes the magnetic struc-
ture drastically, leading to an incommensurate antifer-
romagnet which remains insulating up to a critical con-
centration of holes. The recent observation of short-
range incommensurate antiferromagnetic order'' seems
to lend some support to this picture.

In real compounds, correlation energies are probably
(at least) comparable to the bandwidth. Here I will con-
sider the limit of weak correlation, where the Hartree-
Fock approximation is a valid starting point. It is hoped
that the present results will shed some light on the phys-
ics in more strongly correlated cases. I consider the
standard Hubbard Hamiltonian

H=—I(Z) (aiiajs+aj'§a,<s)+UZn,-;nil, (1)
1,]7,5 I3

where a;; destroys an electron at site i with spin projec-

tion s, and (i,j) indicates summation over all nearest-

neighbor pairs on a square lattice. For exactly ane elec-

tron per site the model has a two-sublattice (commensu-

rate) antiferromagnet ground state. To understand the
physics away from half filling (i.e., for nonzero chemical
potential u), I use the Stoner criterion for the stability of
the paramagnetic metallic state: A magnetically ordered
state becomes stable as soon as 1 —(U/2)yo(k,T) <0,
where o is the magnetic susceptibility of the nonin-
teracting system at wave vector k and temperature 7. In
the present case an expansion for |u|,T<1t,|q| <=
gives

20(Qo+q,7T) =x0(Qo,T)

L r(ag)+/@g-01, @

4’

where Qo =(r,7), § + =t(qx £ q,)/2xT, i =u/2xT, and

T  du Loy g s
=Re | —Z[y(++ix+
fx,p) ef_” Tsinu | [y (5 +ix+iysinu)
—y(s +ix)]. 3)
At zero temperature the limiting form

lim f(x,y) = —2Relarcsin?(y/x+i0 )]
X,y —>
is more useful. One can easily show that f(x,y) has a
minimum at y#0 if x > x¢=0.30409..., and therefore
20(k) has degenerate maxima at Q;=(z*6,n) and
Q,=(n,n+ ), with & nonzero. At T=0 one has
&=u/t. Consequently, the antiferromagnetically ordered
phase appears with the incommensurate wave vectors Q,
and/or Q; if || > 2xoxT. "2 Naively, one might have
expected a modulation wave vector along the diagonal of
the Brillouin zone: Q;=(x=* 6,7+ §). That the vectors
Q\ ;2 lead to the stable state can be seen from the follow-
ing argument: The antiferromagnetic state is stabilized
with respect to the metallic state due to the opening of a
gap on parts of the Fermi surface. For a given modula-
tion wave vector Q a gap is opened along lines in the
Brillouin zone given by ex = €x + , where €, = — 2t (cosk,
+cosk,) is the single-electron dispersion. The corre-
sponding lines for Q, and Q3 are shown in Fig. 1. One
immediately sees that a Q; modulation, with §=2
xsin ~'(| u|/2t), opens gaps on all the flat parts of the
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Fermi surface, and thus leads to a lower energy than the Q; modulation, which only opens a gap on half the flat parts of

the Fermi surface.

Given the instability at wave vectors Q ,, two questions remain: (i) Will there be a modulation with a single wave
vector, Q; or Q;, or a “double-Q” phase? (ii) Will this be a linearly polarized, spiral, or more complicated magnetic
structure? To answer these questions, [ write the moment at site R as

(m(R)) =(4/U)Re(A 'V F+ 2’ B ) | @
where A, ; are complex vector order parameters. The Landau expansion of the free energy per site is then
F(AL,A) =a(@QDLIA |2+ A2 | 1 +b, 1] A 2+ A2 212+ b, ] A | 2] Ay 2
+b30(A1- A (AT -AT) + (A A) (AT - AD) ] +b4l(A- A (AT - AT) +(A- AT)(AT-AD], (%)

where a(Q)=1/U —x0(Q,T)/2, and the analytical ex-
pressions for the b; are rather involved and will be given
in a subsequent paper. The Landau expansion (5) con-
tains all symmetry-allowed quartic terms, and therefore
allows discussion of all possible magnetic structures, in-
dependent of the underlying mechanism: For example,
b,> 0 (b, <0) leads to a single-Q (double-Q) structure,
b3 <0 (b3> 0) leads to a linearly polarized (spiral) anti-
ferromagnet. In the present weak-coupling calculation
b,>0, b3 <0, and consequently I find a linearly polar-
ized single-Q incommensurate antiferromagnet. The
linear polarization is in agreement with general argu-
ments for spin-density waves.'> The phase diagram ob-
tained from (5) for U =2t is shown in Fig. 2.'* For the
C-IC line, only the vicinity of the triple point and the
T— 0 limit (see below) are given by the present calcula-
tions. For different values of U, the general shape of the
diagram remains unchanged; only the temperature and
density scales have to be rescaled by a factor
expl —27(t/U)'2]. 1t should be emphasized here that
this figure is obtained in the small-U approximation. It
is quite possible that for stronger U the coefficients in (5)
change, giving rise to a different (e.g., spiral'®) struc-
ture.

9

FIG. 1. Lines in the Brillouin zone along which a gap is
opened for modulation vectors Q (solid lines) and Qs (dash-
dotted lines). The dashed line is the Fermi surface for u = —1.
Momenta are in units of .
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! A complete investigation of the phase diagram re-
quires considerable calculational effort. In the following
I will concentrate on ground-state properties. Close to
the critical number of holes (n.=0.857 in Fig. 2), the
amplitude of the spin modulation is small, and the
Hartree-Fock wave functions are linear combinations of
plane waves with wave vectors k and k+Q only, with
eigenenergies

Ey= 17 {6k+ &+QX [(Ek"‘fk+Q)2+4A2] 1y 6)

The modulation wave vector Q=(x % §,7) and the gap
A are determined variationally, with results shown in
Fig. 3. The initially linear increase of A below n. is due
to the presence of nonanalytic terms in the ground-state
energy. In that region a gap is only opened on parts of
the Fermi surface, leaving pockets of holes in the vicinity
of the points (% ,0) and (0, * #) in Fig. 1; i.e., close to
n. the system remains metallic. With increasing electron
concentration A increases and Q changes, leading to a
progressive shrinking of these pockets. For a critical
value of A [A=2sin%(6/2) — u in the present approxima-
tion] the pockets disappear completely, leading to an in-
sulating incommensurate antiferromagnet for less than
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FIG. 2. Phase diagram (Ref. 14) in the temperature-density
(n) plane for U =2¢, with commensurate (C) and incommensu-
rate (IC) antiferromagnetic phases, and the paramagnetic
state. Most of the C-IC line is only schematic (see text). For
n <n.=0.857 the IC phase is metallic; for n > n,. it is insulat-

ing.



VOLUME 64, NUMBER 12

PHYSICAL REVIEW LETTERS

19 MARCH 1990

0.4 : ,
0.3F T 1
0.2t 1
+
0.1F 1
0 bl : :
0.8 090 o, 0.95 1.00

FIG. 3. Particle-density dependence of the gap parameter
A/t (solid line) and the modulation wave vector § (dashed line)
at T=0 for U=2t. In this case, the hole pockets vanish for
n>0.942.

one electron per site.

Well away from n., and in particular close to half
filling, A can no longer be treated as small, and higher
harmonics of the spin structure need to be considered.
Then the full Hartree-Fock equations have to be used.
Unless there is another phase transition in the incom-
mensurate phase, the magnetic structure will be the
same as that found from the systematic expansion in Eq.
(5), e.g., linearly polarized and single Q. Assuming the
modulation to be along the x direction, the Hartree-Fock
single-particle eigenstates can be written as yi(x,y)
=eP[uy (x)+(—1)*"u_(x)], with u+ depending
only on x. These functions then obey the equations

—jtluj(x+1)+2cos(plu;(x)+u;j(x—1)]
—AX)u-;(x)=Eu;(x), ()

where j= =%, | p| < /2, and A(x) has to be determined
self-consistently: A(x) =U{ni(x) —n;(x))/2, with the
average taken over the occupied eigenstates of (7). In a
commensurate antiferromagnet A is spatially constant,
and Eq. (7) leads to two bands of extended states,
separated by a gap 2A. By analogy with one-dimensional
charge-density-wave systems, close to half filling (i.e.,
n<n.) the spin structure is expected to be an equally
spaced array of domain walls. I therefore have studied
domain-wall-type solutions to Eq. (7) [a variational An-
satz would be A(x)=Agtanh(x/x¢)]. The following
general statements can be made: (i) Provided A(—x)
=—A(x), u+(x),u-(x) and u-(—x),u+(—x) are
solutions with energies E and — E, respectively, and con-
sequently the spectrum of (7) is symmetric; (ii) for any
domain-wall solution [A( =% o) = % A¢] there are at least
two bound states in the gap. The existence of bound
states opens the possibility of the formation of a
domain-wall structure as soon as there is less (or more)
than one electron per site: The extra holes (electrons)
gain energy by occupying the bound states, rather than
the extended states of the commensurate structure. In
order to decide whether the domain wall or the com-

mensurate structure is more stable, the energies of the
two states have to be compared. I have therefore solved
Eq. (7) self-consistently for various values of U and sys-
tem sizes up to 96 %24, In all cases the domain wall has
a lower energy than the commensurate structure, with a
binding energy (e.g., difference between commensurate
and domain-wall state) of about 0.34A per hole.'® I
therefore conclude that the commensurate state is unsta-
ble against domain-wall formation as soon as there is
less or more than one electron per site. The extra holes
or electrons are localized on the domain walls, and thus
this state remains insulating.'® A single domain wall of
length N, can accommodate N, holes, and therefore at
1+ ¢ electrons per site the distance between walls is
1/| €|, leading to a modulation wave vector §=r|¢|.
This agrees with the numerical results in Fig. 3, for
n— 1. With increasing ¢, domain walls start to overlap
considerably, and then a rather complicated electronic
structure is expected, which only in the limit of small A
reduces to the rather simple form (6).

The formation of domain walls parallel to the y axis
agrees with the fact that the instability of the paramag-
netic phase appears at wave vector Q;, and not at Q.
For a Q; instability one would expect diagonal walls,
e.g., along x = —y. In that case the single-particle wave
functions can be written as y(x,y) =e” ~u(r4), with
r+=x*yp and u depending on r+ only. The analog of
Eq. (7) is then

—2cos(Pltlu(rs+1)+ulr+—1)]
—(=D"*ACHulry) =Eu(ry), @8)

where | p| =< n/2. These are exactly the Su-Schrieffer-
Heeger equations, with Fermi velocity proportional to
cos(p).'"!® Comparing numerical results for (8) to the
solution of (7), I find that the binding energy per hole is
always larger than (7) as long as U is smaller or compa-
rable to the bandwidth 8¢, and therefore the domain wall
parallel to the y axis is stable. For very large U Poil-
blanc and Rice find the diagonal wall energetically favor-
able.!® One may also wonder whether a long-wavelength
spiral state might be energetically favorable, due to the
fact that the order parameter remains nonzero every-
where. However, one then does not form bound states in
the gap, so that the holes have to go into the band of ex-
tended states, at energy cost = 0.34A compared to the
domain-wall state.

I have shown here that the introduction of holes (or
extra electrons) into a half-filled Hubbard model leads to
immediate changes in the magnetic structure: First, a
widely spaced array of domain walls is formed, with the
extra carriers bound to the domain walls. This is similar
to “soliton doping” in one-dimensional systems.'’ With
increasing doping the magnetic structure gradually
transforms into a sine wave, and pockets of free carriers
appear; i.e., the metal-insulator transition occurs within
the incommensurate antiferromagnetic phase. Only
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with further increase of carrier concentration does the
antiferromagnetic order vanish completely. The finite
interval of insulating behavior around half filling is in
contrast to assumptions made in previous work, in both
the weak-U and large-U limits, that carriers become im-
mediately mobile in extended states. To what extent a
finite insulating interval exists even for large U remains
to be seen.?® Beyond the sequence of different phases
with increasing number of holes, the present model
makes specific predictions about the polarization of the
incommensurate antiferromagnet (longitudinal, not spi-
ral) and about the direction of the wave vector (along x
or y, not along the diagonal). These predictions could be
tested on La;—,Sr,CuQO,, where incommensurate short-
range order has been found.'!
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