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Nonlinear Phenomena in Systems of Magnetic Holes
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Experimental studies are made of the response of bound pairs of magnetic holes (nonmagnetic micro-
spheres in ferroIIuid) subjected to a rotating magnetic field. For increasing driving frequency, the
motion of the system goes through a transition from a state where the pair axis follows the magnetic field

with a constant phase delay to a state where the phase delay increases in a series of kinks. The equation
of motion for the rotating pair is found analytically and numerical solutions show good agreement with

experiments.

PACS numbers: 75.10.—b, 75.50.Mm, 82.70.Dd

The dynamic and static properties of fine ferromagnet-
ic particles in a viscous nonmagnetic medium are of wide
interest in science and technology. Phenomena which

occur in such systems are important in manufacturing of
magnetic devices, ' applications of ferrofluids, and use of
magnetic microspheres in medicine. Numerous theoret-
ical and numerical investigations have been made of the
motion of single spherical and nonspherical particles in

alternating magnetic fields, s but there are very few
direct experimental observations on such systems.

The present paper reports novel experimental and nu-

merical studies of the nonlinear response of bound pairs
of magnetic holes (microspheres in ferrofluid) confined
between two parallel glass plates when subjected to ro-
tating magnetic fields in the plane (Fig. I). In contrast
to ordinary magnetized particles with fixed moments,
magnetic holes possess variable magnetic moments col-
linear with an external field at any strength. This com-
bined with the possibility of direct microscopic observa-
tions of particle movements thus allows direct compar-
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ison of theory and experiments for a well defined model
system to study nonlinear dynamics. The interplay be-
tween magnetic and viscous forces leads to various
modes of motion (Fig. 2), which may be classified as (i)
steady-state rotations; (ii) "jerky" (rotations with stops
and backward motions); and (iii) localized oscillations
depending on the frequency and amplitude of the rotat-
ing field, fluid viscosity, and magnetic susceptibility. As
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FIG. I. (a) Sideview of the experimental setup. (b) Top-
view of the coordinate system for two magnetic holes rotating
in the plane between the two glass plates in (a) and driven by
the planar field H(t) as discussed in the text.

FIG. 2. Polar plot of the pair angle p, vs time (radially) for
diA'erent values of the normalized angular frequency ton tott/
tL),'l and for diN'erent anisotropy r of the counterclockwise rotat-
ing magnetic field as explained in the text: (a) just below the
transition to„'~ (mode Ml); (b)-(d) at various angular frequen-
cies above transition (mode M(); (e) below co, 2 in the aniso-
tropic case (mode M(); and (f) above the transition co,'2 (mode
M3). The initial conditions for all simulations were 8(t 0)
~0
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shown below, the transitions between these modes are
well described by a single nonlinear equation.

The experimental setup is shown schematically in Fig.
1(a). The sample cell (20X20 mm ) contained one pair
of uniformly sized polystyrene spheres (diameter 10-
100 ttm) dispersed in kerosene-based ferrofluid' and
confined between two glass plates. The spacing between
the plates was typically twice the diameter of the
spheres. It was possible to create one pair by starting
with a very dilute dispersion and moving two spheres into
position by using a small hand-held magnet. In order to
simplify the experimental conditions for the present stud-

ies, the spheres were prepared in such a way that once in

contact they stayed together. " A set of four coils was
used to produce a magnetic field H(t) rotating within

the x-y sample plane. The components of the field were
H„sin(coHt) and csin(coHt+tt/2) with angular fre-
quency coH. Both circular polarized (r =H~/H„= 1 ) and

elliptical polarized fields (r~l) were used. The motion
of the spheres was observed in a light microscope with
video-camera attachment and recorder. The frequencies
of the various modes were low ( ~ 1 Hz) and could easi-

ly be measured manually using a stopwatch.
The coordinate system used in the derivation of the

equation of motion is shown in Fig. 1(b). The apparent

magnetic moment carried by each sphere is given by
M, ,

—Vg, ttH, where V=zd /6 is the volume of the
sphere with diameter d and g,s is the effective volume

susceptibility of the ferrofluid. g,a is related to the bulk

susceptibility g by g,a X/(I —4'/3). Since the ap-
parent magnetic moments carried by both spheres are
equal and always parallel, the interaction energy be-
tween them is given to first order by the dipolar term

U(8) =M, , (1 —3cos 8)/d

where 8 pH
—p, is the angle (phase lag) between the

pair axis and the direction of the field. ' As mentioned
above, the pair axis is bound and then d is assumed to be
constant.

The magnetic torque, TH = —dU(8)/d8, acting on the

pair is given by

TH = —eA(t) sin(28),

with

e=zg H d /12

A(t) =cos (coHt)+r sin (coHt),

and

r =Hy/H„.

Apart from the magnetic torque TH, the pair is subjected
to a viscous torque, T„,acting opposite to the direction of
the motion,

T„=—Krtd p, /dt,

where rl is the viscosity of the ferrofluid and K is a
geometrical factor related to the sphere diameter. '

For uniform rotation the two torques TH and T„arein
equilibrium. Thus, the equation of motion for the rotat-
ing pair can be written as

dp, /dt =co,A(t) sin[2(yH —p, )j, (4)

where co, =e/Krt and yH =tan '[rtan(coHt)j. In the
reasoning given above, we have neglected the inertia
term Id p, /dt . This can be done as the moment of in-
ertia is small and the viscosity of the ferrofluid is high.

As discussed in the following all the experimental ob-
servations can be explained in terms of analytical and
numerical solutions of the nonlinear Eq. (4). To facili-
tate a direct comparison between observations and nu-
merical simulations, the latter will be presented in the
form of polar y, (t) plots. The starting condition for the
numerical runs was always located on the steady-state
trajectories referred to below as modes of motion. How-
ever, due to the strong damping, the initial transients
were always relatively short (except when coH ap-
proached any of the critical frequencies we shall consid-
er).

For the circular polarized field (r 1), direct observa-
tions show that there exist two distinctly diff'erent
steady-state modes of motion. In the first mode (denoted
by M ~ ), the bound pair is seen to rotate uniformly with
frequency equal to that of the field. This occurs below a
well defined frequency co,'~ of the rotating field. The nu-
merical solution of Eq. (4) for this case is shown in Fig.
2(a). The simulations start with H(t 0) coinciding
with the pair axis. Asymptotically, a constant phase lag
8 (coH) develops and the motion of the pair becomes
phase locked to the rotating field. The magnitude of the
phase lag can easily be found by setting de, /dt =0 in Eq.
(4) yielding

8 (coH) —,
'

sin '(coH/co, ')).
The motion of the bound pair changes character as coH

crosses a critical co,'~ value. This new mode is denoted by
M2. Here, the rotation of the pair is no longer uniform.
What we observe instead is a periodic sequence of for-
ward and backward rotations. For coH just above co,'~,
the forward rotations last much longer than the back-
ward ones. As coH increases, they become more frequent
and comparable in length. On average, the bound pair
rotates in the same direction as the rotating field but the
angular frequency co, of this average motion goes to zero
as AH . Measurements show that co, -AH ' for
AH�&&co,'~. The critical frequency m,'[, which separates
the M[ mode from the M2 mode, is proportional to the
square of the magnitude of the rotating field.

The numerical solutions of Eq. (4) for this case are
shown in Figs. 2(b) and 2(c) where the forward-back-
ward motion cycles are clearly seen. Simultaneous ob-
servation of both the magnetic-field direction and that of
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=2coH [I —(co,'i/coH ) '] '/' (6)

and thus mb=2coH for mH &) co,'i. This is in close agree-
ment with experimental observations. Equation (6) also
shows that as coH approaches co,'1 from above, cob drops
to zero Fo.r this M2 mode the phase lag increases con-
tinuously via a sequence of kinks. For an elliptical rotat-
ing field (H„~H~),both Ml and M2 modes change their
patterns. Rotations of the bound pair become modulated
for low frequencies coH. In spite of the modulation, the
average frequency of rotation is still equal to coH. Let us

denote this mode by Ml. (As r 1 the modulation van-

ishes and the Ml mode is seen to turn smoothly into the
Ml mode. ) There exists a critical frequency co,'1 (co,'1
at which the Mi mode gives rise to a modulated version

the rotating pair reveal that the backward-motion inter-
vals occur when the field makes the phase lag
8(t) mod(~) cross the x/2 value. At this point the mag-
netic torque changes sign, reversing the direction of the
pair rotation. This lasts as long as 8(r) mod(z)
E (x/4, ~). The cycle ends when the field and pair axis

again coincide.
As may be seen in Fig. 2(d) for coH » co,'1 the average

motion of the pair axis approaches a well defined path.
By integrating Eq. (4) (for r 1) from the end of one
backward rotation to the end of the next, one finds that
the angular frequency of the backward rotation is

~z 8
cob =2K

AH+ co,'i sin28
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M2 of the M2 mode. The backward-forward cycles are
here no more identical but their length becomes angle
dependent. For increasing AH the average frequency co,
of the bound pair rotation does not follow the asymptotic
coH

' dependence found for the circularly polarized field.
What we observe instead is that, as AH approaches a
new critical value m,'2, co, goes to zero. Above co,'2 the
pair is seen to exhibit but a simple oscillatory motion
around a direction located between the long and short
axes of the field ellipse. Let us denote this mode by M3.
As coH oo, the oscillatory motion vanishes and the
average direction of the pair axis approaches the long
axis of the ellipse. Both co,'1 and co,'2 are r dependent.
As r decreases, the difference (co,'1 —co,'2) decreases.
Below r 0.5 observations of the Mz mode, which exists
in the range between those two critical frequencies, be-
come practically impossible. The numerical solutions of
Eq. (4) for two typical cases described above are shown

in Figs. 2(e) and 2(f).
The experimental, analytical, and simulated results

discussed so far are summarized in Fig. 3. In order to do
this we have defined an average angular frequency of the
rotating pair given as co, =coH —cob/2. In Fig. 3 we have
also normalized the angular frequencies relative to co,'i
and the plot shows co,/co,'1 vs coH coH/co,'i for different
values of r. Experimental and simulated-analytical re-
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FIG. 3. Plots of the normalized average angular frequency
co,

'
co,/co,"i for various amplitude ratios r of the components of

the magnetic field vs the reduced angular frequency coH coH/

co,'I for the rotating field. The solid curves represent simulated
results and the dots experimental results. The dash-dotted
curve for r 1 (curve f) is the exact analytical solution given

by Eq. (6) and co,
'

(coH —cob/2)rco,"i The inters. ections of the
solid curves a-e with the dash-dotted line to the left (co,

'
coH)

represent the critical frequencies co,'1 in Fig. 4(a), whereas the
intersections with the horizontal solid line (co,'=0) represent
the critical frequencies co,'2 in Fig. 4(b).
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FIG. 4. (a) Behavior of the normalized lower critical angu-
lar frequency co,'i co„'1/co,'i for different values of the anisotro-

py parameter r. The solid curve shows the asymptotic behavior
for r l. (b) Same as (a) for the normalized upper critical
angular frequency co,'2 co„'2/co„"1with the solid curve indicating
the asymptotic behavior as discussed in the text.
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suits thus refer to here as measured and calculated
values obtained for rob, respectively. As may be seen, the
agreement is rather good except perhaps for coH close to
the m,'2 values. This is plausible as only very small devi-
ations in the experimental setting of r from the nominal
value will result in large deviations in the measured cob.

We have also investigated in detail the relationship be-
tween the anisotropy r and the lower and upper critical
angular frequencies, ro,'~ and ro,'2. These have been
determined by an iterative approach. Figures 4(a) and
4(b) thus show the result of these computations (ex-
pressed relative to ro,'~). The curves showing the asymp-
totic behavior, for r I, are based on rather lengthy
evaluations of asymptotic behavior of integrals, and this
is discussed elsewhere A.s may be seen, ro,'2 ( ro,'2/ro, '~)
diverges as r I, so in the limit of circular driving
fields, the pair will always rotate (ro„')0) in our approx-
imation, regardless of the values for roH. By comparing
Figs. 4(a) and 4(b) we also see that ro,'~ approaches ro,'q

as r decreases as also seen in Fig. 3.
From the present studies of rotating pairs of magnetic

holes in a viscous fiuid we are able to conclude that the
dynamics are well described by an overdamped nonlinear
equation of motion including magnetic and viscous
torques. This is based on several cross checks between
experimental results and numerical solutions. As the ex-
perimental system is rather simple and well defined, ob-
vious extensions like the introduction of noise and fre-
quency modulation of the driving field, allowing the par-
ticles to have radial motions, or the use of more than two
particles should make it possible to study a wide range of
nonlinear dynamic behavior including transition to
chaos.
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