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Surface Roughening in a Hypercube-Stacking Model
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%e study in d+1 dimensions a new deposition and evaporation model of a d-dimensional surface
which bears a Potts-spin representation. For the pure deposition case, our simulations on systems up to
11520 sites in d 2 and 2x192' sites in d 3 yield roughness exponents which violate recent conjec-
tures. Including evaporation, we observe a nonequilibrium surface-roughening transition in d 3, but
only a smooth crossover behavior in d 2. A logarithmic anomalous scaling form for surface width at
the transition is conjectured.

PACS numbers: 61.50.Cj, 05.40.+j, 05.70.Ln, 81.10.Bk

Surface roughening due to thermal fluctuations has
been studied extensively over the years. ' There now ex-
ist well-established theories' as well as exactly solvable
models'i which come to fair agreement with observed
surface roughening in copper and other experimental
systems. In certain class of growth processes, such as
Eden growth4 and vapor deposition, 5 the moving surface
of a compact cluster may also become rough under a sto-
chastic growth rule. The scaling properties of the sur-
face height fluctuation and characteristics of possible
nonequilibrium roughening transitions have been the top-
ic of a number of recent numerical and analytical investi-
gations.

Kardar, Parisi, and Zhang proposed a nonlinear
Langevin equation

Bh/Bt vV2h+(A, /2)(Vh)2+ri(x, t),
for the local growth of the profile h(x, t) of a moving in-
terface above a d-dimensional flat substrate. ' The first
two terms on the right-hand side of (1) describe surface
relaxation and a correction to the growth velocity due to
a local tilt of the surface, respectively. The third term is
a random variable which for our purpose will be assumed
to be a white noise of variance D. Simple scaling argu-
ments (power counting) as well as a one-loop renor-
malization-group (RG) calculation applied to (1) show
that weak noise (DX /v «1) is relevant for d & d, 2,
and irrelevant for d & d, . ' The RG analysis indicated
the possibility of a nonequilibrium roughening transition
from the weak-coupling to a strong-coupling regime
(Dk /v 00) for d&d, . It has also been suggested
that anomalous roughening behavior may arise at the
transition. '

Numerical simulations of Eden growth and ballistic
deposition ' models show that the mean-square width
of a surface grown from a flat substrate of linear size I.
at t 0 can be put in the scaling form '

w'(t) =L'4'(t/L'), (2)

where F(x)—x ~ (P=g/z) for x&&1 but becomes con-
stant for x&)1. Analysis of Eq. (1) provided the basis
for the scaling and universality of roughness exponents

among various growth models. ' ' In particular, it was
shown ' ' that ( and z satisfy the scaling law g+z 2,
in good agreement with numerical findings. However,
the precise values of g and P are known only in 1 1,
where there exist exactly soluble models, as well as
other analytical and accurate numerical results. '' In
higher dimensions numerical " and functional RG cal-
culations'5'6 show a dependence of the exponents on
dimensionality. Accurate determination of their values
in simulation studies is often hampered by one or several
of the following factors: large intrinsic width of the sur-

face, ' ' crossover efl'ects, ' ' and growth oscillations. 2i

A crucial step in overcoming these difficulties is to ex-
tend the simulation to very large systems.

In this Letter we report a numerical study of a deposi-
tion and evaporation model, in an attempt to provide
better estimates for the roughness exponents, and to
probe the nonequilibrium roughening transition. Using a
Potts-spin representation and a multisite-coding, parallel
processing algorithm for surface growth, we were able to
simulate systems of significantly larger size (N L

11 520 sites for d 2 and N 2L 2 x 192 sites for
d 3) than most previously reported studies. We give
accurate estimates for the roughness exponents which
are in conflict with existing conjectures in the litera-
ture 7, 1 l, l 3, 14

Consider the surface of a stack of hypercubes on a
(11 1) substrate plane in d + 1 dimensions. Such a
surface is described by an integral height function h(x)
=g, -+In„where n, are coordinates of surface site
R gn, e, whose projection onto the substrate is given

by x =$n,e, Asolid-on-s. olid (SOS) condition on the
height h(x) will be assumed at all stages. The model is
defined as a sequence of stacking events, each time a hy-
percube is added to the surface at a deposition rate p+,
or taken away from it at an evaporation rate p . It is a
generalization of the single-step model considered previ-
ously by Plischke, Racz, and Liu. Using a tiling inter-
pretation, the model describes kinetics of a driven
domain-wall system. It can also be viewed as a
lattice-gas diffusion model in a closed system, with a lo-
cal updating rule similar to the sand-pile model studied
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FIG. l. (a) The surface of a cube stack with only (100),
(010), and (001) faces exposed. (b) A rhombus tiling obtained

by projection onto a (111) substrate plane. Open (s —,
' ) and

solid (s —
—, ) circles indicate Ising spins on vertices (of part)

of the tiling. A rhombus edge corresponds to a satisfied anti-
ferromagnetic bond.

by Bak, Tang, and Wiesenfeld.
In addition to the pure deposition case at p+ —,

' and

p 0, which yielded the accurate estimates for the ex-
ponents characterizing the rough phase, we studied the
model at other values of p . Our kinetic model at p+

p generates the distribution for a stationary surface
at thermal equilibrium. Indeed, the surface in this case
was found to be smooth for d 3 and logarithmically
rough for d 2. For 0 (p & p+

& the situation

seems to be different in two and three dimensions. In

d 2 our results are consistent with the prediction of a
transient temporal regime' whose size increases rapidly
with decreasing p+ —p, thus hindering observation of
true asymptotic behavior at even a moderate p p+/2.
However, our systematic study points to a smooth cross-
over rather than a sharp nonequilibrium morphological
transition in the system. In contrast, the surface-width
data in d 3 strongly suggests a nonequilibrium

roughening transition. Our numerical investigation
combined with a known exact result in d 2 leads us to
conjecture an anomalous scaling form

w'(t) -(nK) 'ln[Lg(t/L')),

at the roughening transition in our model for d» 2.
Here g(x)-x'i for x«1 and becomes a constant for
x» I, and K is the stiffness constant of the surface when

d 2.
The mapping from h (x) to the Potts-spin con-

figuration is given explicitly by

a(x) =h (x) (mod d) .

It can be shown that [o(x)[ thus obtained is in the
ground state of a chiral Potts model with a Hamiltonian
H —P,,,b[o(x)+ l, a(x+e, )}, where b[i,j[ I if
i j (modd), and 0 otherwise. Restricting a Potts-spin
configuration to be in this class, the SOS condition en-

sures a unique inverse mapping apart from an overall

height shift. Figure 1 shows an example in d 2. The
rhombus tiling in Fig. 1(b) is the projection of the sur-

A I I

p+ P,
e2

FIG. 2. Local updating rule for the center vertex in (a)
d 2 and (b) d-3 dimensions. Open circles denote Potts spins
in state a, and solid circles, a+ I (mod d). Heavy lines indi-

cate satisfied bonds, and dashed lines, unsatisfied bonds. The
cubes shown in (b) are a guide to the eye.

face in Fig. 1(a) onto the (111) plane. It is obtained
from an Ising-spin configuration [s(x)=—o(x) —

2 j on

the two-dimensional (2D) triangular lattice by simply
connecting neighboring sites occupied by opposing spins

[see Fig. I(b)], provided [s(x)J is in the antiferromag-
netic ground state. The surface height h(x) can be ob-
tained by adding up height differences d,h along rhombus

edges or satisfied bonds: hi't 1 if the edge is oriented

along e„and 51t —1 if it is oriented along —e, [see
Fig. I(b)). For d 3 the substrate lattice assumes a
body-centered-cubic (bcc) structure.

Our local rule for surface evolution under the SOS
condition is illustrated in Fig. 2 for d 2 and 3. Deposi-
tion o (x) o (x) + I (mod d) at the center vertex is per-
formed, with a probability p+, if cr(x) cr(x') for all
x' x —e,', a 1, . . . , d+1 (corner sites shown by open
circles). Evaporation cr(x) o(x) —

1 (modd) is per-
formed with a probability p under the condition a'(x)

a(x") for all x" x+e„a 1, . . . ,d+ I (corner sites
shown by solid circles). This local updating rule

preserves the ground-state condition on the Potts con-

figuration.
We start from a flat surface at t 0, which has an

average orientation along the body diagonal (11 1)
and a width satisfying w2(0) d(d+2)/12. Periodic
boundary conditions are used in the simulation. A sub-

lattice structure is chosen so that sites on the same sub-

lattice can be updated simultaneously at a given time

step. A detailed discussion of the mapping and the
growth algorithm will be presented elsewhere. 24

Our result for the largest systems is summarized in

Fig. 3, which shows w (2t) —w (t) at p+ —,
' and a

number of values p rn/64, plotted against t on a log-

log scale. Error bars indicate statistical fluctuations

among different realizations. Let us first consider the

pure deposition at m 0. For both d 2 and 3, data ap-

proach a straight line at very early times, as in the case
of a restricted SOS deposition model studied in Ref. 11.
Relative statistical errors on w (t), though increasing

rapidly during growth, reach only about 0.5% for d=2
and about 3% for d=3 at the longest time shown. To
determine P(d), we invoke a convolution Ansatz ' which

assumes that the leading correction to Eq. (2) is a size-
and time-independent constant. Based on this assump-
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FIG. 4. A scaling plot of surface-width data in three dimen-

sions at p+ 2 and p & using K 1.2.
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FIG. 3. Surface-width data in (a) d 2 and (b) d 3 di-
mensions at p+ —, and p m/64. Data shown in (a) are
for systems of linear size L 11520 (ttt 0) and L 5760
(m )0). The dashed line in (a) is at a constant value 9ln2/
4x.

TABLE I. Successive estimates of the dynamical exponent

P(2) ' P(2) '

4
16
64

256
1024

0.245(3)
0.2402 (2)
0.2403 (6)
Q.2400(3)
0.2403 (2)

0.243(2)
0.2399(2)
0.2405 (3)
0.2401 (2)

0.230(6)
Q.241(2)
0.242(2)
0.24Q(2)

0.233 (3)
0.2406(8)
0.240(2)
0.2400(8)

'From lnlw (t) —wfl] vs lnt at M consecutive times t, 2t, . . . ,
2M —I]

Fmm ln[w (2t ) —~ (E)] vs in/ at M consecutive times s, 2t, . . . ,
2M —1]

tion, we performed a linear least-squares analysis to
(i) ln[w (t) —woz] 2plnt+const, and (ii) ln[w2(2t)
—w (t)] 2plnt+const. The constant wtf=w(0) is

chosen to extend the plateau of the fitted slope to shorter
times. The exponent p(2) thus obtained is listed in

Table I. Numbers in parentheses give the uncertainty in

the last digit from a standard regression analysis. The
fitted slopes at large t show an excellent agreement with

each other, and yield p(2) 0.240+ 0.001. Because of a
smaller linear system size and growth oscillation at short
times, our estimate for P(3) 0.180~ 0.005 is less accu-
rate. We also determined the exponent g(2) 0.385
+0.005 and ((3) 0.30+0.01 using a steady-state sur-
face width in systems up to L 480 in d 2 and L 128
in d 3, respectively. The relation (+z 2 is satisfied in

both cases within our numerical accuracy.
Focusing on Fig. 3(a) for d 2, the equilibrium case

(m 32) reaches a plateau around 1n2/2ttK (shown by
the dashed line), thus confirming (3). Here K 2tr/9 is
the exact value determined in Ref. 3. Data in between
the equilibrium and pure deposition (m 0) case show a
crossover behavior. The time which it takes to reach the
asymptotic regime grows rapidly with increasing m, and
goes beyond our longest simulation time at m 16 or

p p+/2. Simulations at p closer to p+ in systems
even as large as ours and over a broad time range may
very well yield an effective exponent p, fr lower than the
asymptotic value. Our result at different values of m
show that it might be misleading to interpret a change in

p ff as an indication of a kinetic morphological transition.
A different situation is encountered in Fig. 3(b) for

d 3. Data at large t increase with t for m ~ 7 and de-
crease for m~ 9, while remaining approximately con-
stant at m 8. This suggests a nonequilibrium roughen-

ing transition at p p, s
+' s'4. We also studied

the behavior of rtf (t) below the transition at m 12 and
16 (not shown). Both cases exhibit the same behavior as
a smooth surface at equilibrium. The width of the sur-
face saturates to a constant with a 1/L correction.

Figure 4 shows scaled w (t) data at m 8 and a num-
ber of system sizes from L 16 to 192 on a semilog plot,
using K 1.2. There appears to be a good agreement be-
tween the data and the conjectured anomalous scaling
form (3) over the time range and system sizes studied.
This in addition gives a confirmation of the transition
point p, =

8 determined above.
In conclusion, we have presented a detailed numerical
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study of a hypercube-stacking model which includes both
deposition and evaporation processes. Accurate esti-
mates for the exponents characterizing the rough phase
of the model were given. We studied the nonequilibrium
roughening transition in three dimensions, and proposed
an anomalous scaling form for the surface width at the
transition.

The height-height correlation function of our model
can be directly related to a four-spin-correlation function
in the Potts-spin representation. Thus it should be pos-
sible to study the behavior of the rough phase and the
nonequilibrium roughening transition by looking at ap-
propriate order parameters of the Potts-spin system.
Another feature of our model is an intrinsic sublattice
structure associated with the layering of (11 . I) lat-
tice planes of the (4+1)-dimensional hypercubic lattice.
Our preliminary studies in d 3 indicate that the aver-

age height of different sublattices is different in the
smooth phase, but becomes the same in the rough phase
(apart from a finite-size correction). The vanishing of
the difference in the average heights appears to take
place right at the roughening transition. It would be in-

teresting to further explore this apparent coincidence.
We would like to thank D. E. Wolf for introducing us

to the problem and many helpful and enlightening sug-
gestions. We also benefited from interesting discussions
with R. B. Griffiths, J. Kertesz, T. Nattermann, and W.
Renz. Computations were performed on a Cray X-MP/
416 vector supercomputer.
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