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The chiral Schwinger model is reexamined by Using chiral bosonization. The Lagrangian is obtained
as a gauged Floreanini-Jacki~ Lagrangian. %'e get a bosonic solution which contains one massive free
boson and one (free) self-dual field.
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«rmion-boson correspondence is one of the most
interesting features of and a powerful tool in two-
dimensional quantum field theories. Recently much at-
tention has been paid to so-called chiral bosonization
mainly in the context of string theories. ' It is, howev-

er, natural to think that chiral bosonization should be
important to left-right-asymmetric fermion theories, e.g. ,
anomalous gauge theories in two dimensions.

There are two apparently inequivalent approaches to
chiral bosons. Siegel' proposed a manifestly covariant
Lagrangian of chiral bosons. However, it turns out that
the symmetry (a sort of reparametrization invariance) of
the classical Lagrangian suff'ers from the gravitational
anomaly at the quantum level. On the other hand,
Floreanini and Jackiw proposed an alternative Lagrang-
ian, but there seems to be no definite way to introduce
gauge couplings (see Ref. 5) because of the lack of man-
ifest covariance.

Bellucci, Golterman, and Petcher considered the in-

teraction of chiral bosons with Abelian and non-Abelian

gauge fields and discussed the chiral Schwinger model
as an example. Labastida and Ramallo considered
chiral bosons coupled to Abelian gauge fields using the
Becchi-Rouet-Stora-Tyutin (BRST) procedure. Both
papers are based on the Siegel Lagrangian.

Z[A] =„Idydtltexp J d xX
with

(la)

XF = tity" [ir)„+eJzA„(1 —y5)] tit

= titRi y"8„tittt + tire y" (i8„+2e JmA„) tirL . (1b)

Since the right-handed fermion is decoupled, the integra-
tion dyR dyR gives a field-independent constant and may
be absorbed in the normalization. The remaining path
integral can be performed exactly,

In this Letter, we show how to obtain a gauged La-
grangian for the Floreanini-Jackiw Lagrangian from the
conventional bosonic one of the chiral Schwinger model
by imposing the chiral constraint trt,

—p'= 0 (see below)
in phase space. This Lagrangian contains fewer degrees
of freedom than the conventional bosonic one. Further-
more, we quantize the model canonically and solve it.
We find an obvious correspondence to the previously ob-
tained solution. The asymptotic fields consist of a mas-
sive free boson with the desired mass and a (free) self-
dual field (chiral boson).

The details of our analysis will be reported in a
separate paper.

Let us consider the following generating functional: '

~ 2

Z[A] = dtltt dtlrLexp i„~ d x 7I iy"t(it)„+2eJnA„)yt =exp &I d xA„ari"' —(tl" +tl")—(tl "+ti') A, , (2)

where a is a constant which represents a regularization
ambiguity. (We consider only the case a) 1 in this
Letter. ) This generating functional can be written in a
local form by introducing an auxiliary scalar field tt (x),

Z[A] = dpexp i„d xXtt

with

Xtt = —,
'

(t)„twt) +e(tl"' — e)8„&A„'+e aA„A" . (3b)

From the above derivation, it is clear that L~ is

equivalent to LF in the sense that these two Lagrangians
lead to the same Z[A]. In the fermionic theory, the

whole nontrivial contribution to Z[A] comes from the
left-handed fermion. In other words, one can get the
same Z[A] even if the right-handed fermion is not in-
cluded from the beginning. (Let us call this case
minimal )On the other h. and, p(x) in Xtt contains de-
grees of freedom which do not correspond to the left-
handed fermion. To see this, let us consider the e =0
case. In this case, the original fermionic theory (2) con-
tains only a free left-handed fermion which depends on
only one of the light-cone coordinates [tttt =tttL(x+)].
On the other hand, the corresponding bosonic theory (3)
contains left- and right-moving components. Therefore
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the Lagrangian L~ is not suitable for describing the
minima/ fermionic theory. The minimal description can
be achieved by considering chiral bosonization.

In order to get the reduced Lagrangian, let us consider
the Hamiltonian obtained from Lp, ' '

We impose here the following "chiral constraint, "'
Q(x)—= tr, (x) —y'(x) =0. (5)

It turns out that the chiral constraint Q(x) is second
class: '

&g = —, [tr, —e(Ap —A, )]'

+ (e ) eO'(Ap —A, ) —, e —aA„A"

{Q(x),Q(y)} = —28'(x' —y') . (6)
Let us consider the quantum theory which is described
by the Hamiltonian (4) subject to the chiral constraint

(4) (5). The generating functional is obtained, by noting
that det{Q, Q} is a field-independent constant, as

Z,h[A] = dgdtr~8(tr~ —P') ~det{Q, Q} ~' exp i d x(tr~P —i'Vtt) = dPexp i d x J,h (7a)

with

&,h=pts' —(p') +2ett'(Ap A~) 2 e (Ap —A~) + —,
' e aA„A". (7b)

This Lagrangian is a gauged version of the Lagrangian of Floreanini and Jackiw, Xp=pp' —(p') .
By doing the P integration, we can see that the Z,h[A] gives the correct answer (2), Z,h[A] =Z[A]. Therefore the

Z,h[A] is an alternative local expression of the generating functional Z[A].
It is amusing to note that, although there seems to be no definite way to gauge the apparently noncovariant Lagrang-

ian of Floreanini and Jackiw, we obtained the gauged one (7b) from the conventional bosonic Lagrangian (3b) by im-
posing the chiral constraint (5) in phase space.

In the following, we canonically quantize the bosonized chiral Schwinger model described by the Lagrangian'
X = —

4 F„,F""+&ch
The system turns out to be a constrained system with two primary constraints, Q~—= tr —=8&/&Ap=0 and

—= tr~ —p'= 0. ' The total Hamiltonian is written as

Hr=~ dx'(R+u, Q, ),
e=n~A„+nj ~= —,

' (n')'+n'a, Ap+(P') 2el'(A—p A, )+ 2 e (Ap A, ) —
2 e aA„A",

(ga)

with tr' =BE/t)A~. The u, (i =1,2) are Lagrange-multiplier fields.
Consistency of Q~ under the time evolution, Q~ =0, gives the Gauss-law constraint, Q3=8~tr'+2ep'+e [(a —1)

x Ap+ A
~ ] 0, while Qq = 0 and Q &

= 0 determine u 2 and u ~, respectively. We have no further constraints.
It is easily shown that all these constraints Q, = 0 (i =1,2, 3) are second class. Thus we can define the Dirac brack-

et' as usual,

{A(x),B(y )} = {A(x),B(y)}—
I dz dw{A(x), Q, (z)}CJ(z,w) {Qi(w),8(y)}, (9a)

where C,~(x,y) is defined by

dy C,~ (x,y ) {Q~ (y ), Q t, (z )} =8;t, 8(x —
y ) .

In our case, one may get the following explicit expression:

(9b)

C„(x,y) =
e'(a —1)

0 e8(x —y)
—e6(x —y ) —e (a —

1 ) e(x —y )/4

, —b(x —y) 0

8(x —y)
'

0
0

(10)

where e(x) is the sign function, e(x) =+ 1 for x )0 and e(x) = —
1 for x (0.

By means of the Dirac bracket, we can eliminate redundant variables consistently and quantize the system, replacing
{,}*by —i [, ]FT. Under an appropriate boundary condition, Q2(~) = —Qi( —~), we can choose &,A ~, tr' as in-
dependent variables with the nonvanishing commutators

[P(x),P(y)] Er = —ie(x ' —y ')/4,

[A )(x),tr'(y)]pr —t8(x ' —
y '),

(I la)

(I lb)
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and the Hamiltonian

2 20 = Jr d ' —( ')'+ (t) ')'+ (y')'+ (& )
2 2e 2(a —1) a —

1 2(a —1)

2

e(a —1) a —
1 a —

1

(12)

The remaining task of deriving equations of motion
and solving them is straightforward. Here we present
only the solution. In spite of the superficial diflerences,
the solution is the same as the one obtained in Ref. 7,

p=o —h,

A„= —(1/ea) [rl„&+(a —1)t)„&—a&„hj,
(13a)

except for the fact that the h field is now a self dual-
field, (t)0 —81)h =0. This field satisfies the commutation
relations [h(x), h(y)]FT = —ie(x ' —y ')/4 and [h(x),
h(y)]ET=(i/2)8(x' —y'). The field cr(x) is a massive
free scalar with the correct mass m =e a /(a —1) and
the commutation relations [a(x),cr(y)]ET =0 and
[a(x),a(y)]ET=i'(x ' —

y ')/(a —1).
This minimal description of the chiral Schwinger

model has very important consequences. (i) The massive
scalar field cr(x) is made up only of the gauge field and
the left-handed fermion. The right-handed fermion
plays no role in making the "meson. " (ii) The right-
handed fermion, if we include it, should continue to be
free. Therefore the chiral anomaly should not influence
the current conservation of the (free) right-handed fer-
mion current. Note that several authors' considered an
"anomalous" right-handed fermion current. %e think it
unnatural. (iii) The self-dual field h(x) corresponds to
the pole k =0 of the A„propagator. As suggested in

Ref. 7, it may be natural to think that the field h(x) rep-
resents an "unconfined" fermion because a self-dual field
has a completely local description in terms of fermionic
variables.
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