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We have been investigating the behavior of thin-core inviscid vortices of constant circulation in an
effort to model quantized vortices in helium II. We have found that at 7=0 K, Kelvin waves (standing
cosine waves on vortex cores) are unstable to the buildup of sidebands. This instability is recurrent in

the sense of the Fermi-Pasta-Ulam phenomenon.

PACS numbers: 67.40.Vs, 47.30.+s

Waves on quantized vortices in helium II have been
studied for many years, and much has been learned, but
substantial problems remain.! Wave excitations of sin-
gle quantized vortex lines are considered to be helical
disturbances which obey a dispersion relation first given
by Lord Kelvin. When these waves are excited on a vor-
tex line between fixed boundaries, a plane standing wave,
called a Kelvin wave, is produced which rotates in the
laboratory frame under its self-induced velocity.

The study of classical vortices, however, has revealed
that classical vortex lines can sustain solitary waves;
indeed Maxworthy, Hopfinger, and Redekopp have
shown that in certain experiments the solitary wave may
be the only wave excited.? Hasimoto has shown that for
inviscid thin-core vortices, the equations of motion can
be approximated by a nonlinear Schrdodinger equation,
and that such vortices support solitary-wave solutions.>
There is every reason to suppose that such considerations
should apply to quantized vortices; indeed some unpub-
lished experiments of our own have suggested that ions
moving along quantized vortex lines might be accom-
panied by solitary waves. In order to design a crucial ex-
periment we have been performing simulation studies of
vortex waves. To our surprise we have discovered that
Kelvin waves above a threshold amplitude are unstable
at low temperatures. The origin of this claim is the sub-
ject of the present Letter.

A striking behavior of many nonlinear systems is their
ability to reconstruct (or very nearly reconstruct) their
initial state in a reasonably short time. This “recur-
rence” phenomena was first noted by Fermi, Pasta, and
Ulam* (FPU) in early numerical simulations of chains
of nonlinear oscillations. Commonly called FPU re-
currence (to distinguish this behavior from Poincaré re-
currence which has practically infinite recurrence times
for systems with more than a trivial number of degrees
of freedom), this type of behavior is known to occur in
solutions to the Korteweg-de Vries equation® (KdV) and
the nonlinear Schrodinger equation (NLSE).® In this
paper we also report our observations of recurrent behav-
ior in simulations of thin-core, inviscid vortex dynamics.

The equation of motion of a point r on a thin vortex

core is given by the Biot-Savart law,
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where I is the circulation. The common approximation
to use here is the local induction method (or the Arms-
Hama method),’

dr/dt =Gr'xr"” )
where we define
G=(T/4r)in(Ry/acq) , 3)

a prime denotes differentiation by arclength, aeg is the
effective core size, and Ry is an adjustable length scale.
In Hasimoto’s derivation of Eq. (4) and in our simula-
tions that use the Arms-Hama approximation, the factor
G is assumed constant in space and time. We employ
both the full Biot-Savart law and the local Arms-Hama
method in our simulations.

The NLSE derived by Hasimoto from Eq. (2) for vor-
tex motion is

0=i®,+d,+ + | 2| D, 4)

where we define

@ =xexp [ij;srds] , (5)

K is the curvature of the vortex core, t is the torsion, and
s is the arclength. This formulation of the problem
points the way to some interesting possible vortex behav-
ior, though it should be kept in mind that the NLSE is
only an approximation to the full Biot-Savart law. In
particular, the assumption of constant G is questionable.?
None of our simulations were done using the NLSE;
however, the simulations using the Arms-Hama equation
should be equivalent to the NLSE.

Our simulations deal with a specific vortex system:
quantized vortices in liquid-helium II. This system has
certain properties that make it a particularly good physi-
cal system to be modeled by Eq. (1). Superfluid helium
at absolute zero is inviscid and irrotational. The circula-
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tion around a vortex core is quantized (I'=h/m, where
m is the mass of the helium atom) and, due to energy
considerations, only a single quantum of circulation is
present in each vortex. The core radius is measured ex-
perimentally to be on the order of 1 A, so the core is
thin. Though our simulations are done using the specific
circulation and core size for superfluid helium vortices,
the results reported here apply to any thin-core inviscid
vortex.

In 1967, Benjamin and Feir® showed that finite-
amplitude waves on deep water (Stokes waves) are un-
stable to perturbations in the sideband waves. Later this
was found to be a general instability of wave solutions to
the NLSE,® with applications in many fields of physics.
Helical waves are wave solutions to Hasimoto’s NLSE
for constant curvature and constant torsion. Following
the stability analysis of Andersen, Datta, and Gunshor’
for waves in a dispersive medium with a third-order non-
linearity, and translating to vortex-dynamics vocabulary,
we find the stability condition for helical waves to be

Ao/A<1/27n, (6)

where Ao is the initial amplitude of the main helical
wave, A is the wavelength, and n is the number of half
waves on the vortex. Unstable sidebands will grow ex-
ponentially, with the growth exponent a,
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for the nearest-neighbor sidebands. Once the sidebands
grow to be comparable in magnitude to the main ampli-
tude, this instability analysis is invalid and a new behav-
ior (recurrence) occurs.

For our initial conditions, we started the simulations
with a superposition of a planar wave and two neighbor-
ing sidebands of small amplitude as a perturbation. The
vortex extended across a gap, set at 0.001 cm between
two flat horizontal boundaries. The boundary conditions
are that the vortex line meets the boundaries normally
and can slip along the boundary. The velocity field of
the vortex line must be parallel to the boundary at the
boundary. These conditions were met by using the
method of images. The logarithmic singularity in Eq.
(1) is healed by using a finite-size hollow-core model due
to Schwarz.'® The vortex line was modeled by N =128
straight-line vortices. We integrated both Egs. (1) and
(2) using a Runge-Kutta-Fehlberg method on an HP
835 computer, with early work done a Cray X-MP/48
computer at the San Diego Supercomputer Center.

As we integrate the equations of motion forward in
time we take the wave form and do a least-squares fit of
the amplitudes and phases (in the horizontal plane) of a
set of 21 cosine waves (n=0 to 20) at fixed intervals in
the number of time steps. The fits are used for data out-
put only. In Fig. 1 we show a graph of the amplitudes
versus time for a simulation using Eq. (2). The re-
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FIG. 1. Sideband instability and recurrence phenomenon for
a quantized vortex line. At z=0 we impose a cosine wave of
n=11 half waves at an amplitude of 4o=0.025A with one pair
of sidebands (10 and 12 half waves) of amplitude 4 =0.01Ao.
This Kelvin wave rotates in the laboratory frame with a period
T=22%/TlIln(A/2ra.a) —0.116]. Here, we plot the amplitude
of the main harmonic (n=11) and the lower harmonics
(n=10, 9, and 8 in order of decreasing amplitude) of the three
closest sidebands as a function of time. The amplitude is
scaled by the wavelength A and the time is scaled by the period
of the main initial cosine wave. A plot of the amplitude of the
upper harmonics (n=12, 13, and 14) of the sidebands looks
very similar.

currence behavior of the system is very clear and regular.
There is no known method of predicting the FPU re-
currence time, though estimates can be made. A good
estimate for the recurrence time in our simulation is
given simply by considering the exponential growth time
of the sidebands. The sideband amplitudes are observed
to grow exponentially nearly all the way to a maximum
and then decay exponentially back to the original pertur-
bation amplitude (within a few percent). This gives an

estimated recurrence time of
2 |1y [ Ao

Tree= = |In , (8)

where A is the initial amplitude of the sidebands. The
exponential behavior of the growth of the sideband am-
plitudes to such large values relative to the initial wave is
surprising since the Benjamin-Feir approximations break
down before that point. Also surprising is the fact that
the recurrence involves not only recreating the original
main amplitude but also recreating the perturbation am-
plitudes. This is a very sensitive dependence of the
long-time behavior of the system to initial conditions.
We can rewrite (8) as

_ (n)? In(4o/A)
T 26n || 2lQrnAg/)E—112 |

where the first term is the beat time between the main
mode and the sideband modes and the term in
parenthesis is of order 1 or larger for A < Ap. Thus the
beat period can be used as an estimated lower limit for
the recurrence period. Table I gives our results of simu-
lations using the Arms-Hama approximation while vary-
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TABLE I. Observed recurrence times 7Ty, from simulations
using the Arms-Hama approximation, as a function of Ao/A
and Ao/A compared to predictions from Eq. (8). The simula-
tion of Ao/A=3.0 is in the confined-chaos region but the ampli-
tudes show enough recurrence to measure an approximate re-
currence time.

Ao/r T rec (simulation) Trec [Eq. (8)]
(%) AolA (10 72 sec) (10 =¥ sec)
2.0 100 2.0*+0.1 1.5

2.5 100 1.3+0.1 1.0

3.0 100 09+0.1 0.8

2.5 20 0.8 0.1 0.7

ing the ratios Ao/A and Ao/A, compared to the predicted
values from Eq. (8). The differences are explained by
the low values of a in the simulations [see Fig. 3 and Eq.
(3)1.

This simple FPU recurrence is not the only large-
time-scale behavior of this system. If the amplitude of
the main frequency is large enough then the next-near-
est-neighbor sidebands also become unstable. This insta-
bility limit is given by

Ao/A> 1/nn . (10)

For amplitudes past this limit simple recurrence is not
observed. Instead the energy seems to shift in a compli-
cated manner among the unstable modes (Fig. 2). This
behavior has been labeled “‘confined chaos” by Caponi,
Saffman, and Yuen.!'" Our simulations verify this be-
havior for both the Arms-Hama approximation and the
full Biot-Savart calculation.

In Fig. 3 we show the observed growth exponents of
the sideband amplitudes in simulations using both the
Biot-Savart law and the Arms-Hama approximation
with a comparison to the theoretical prediction of Eq.
(7). The difference between the theoretical exponents
and the values from the simulations is apparently an ar-
tifact of the finite mesh of the simulation. We have done
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FIG. 2. The same initial conditions as Fig. 1 except that the
initial amplitude of the main cosine wave is raised to Ao
=0.034, slightly over the limit on simple recurrence [Eq.
(10)]. The qualitative difference compared to Fig. 1 has been
called “confined chaos.”

some simulations using a greater number of points to
mesh the vortex line, and the results of these simulations
approach more closely the theoretical values. Because of
the very time-intensive nature of simulations using the
Biot-Savart law, we have only done simulations over a
range of initial amplitudes using 128 points on the line.
The growth exponents from the Biot-Savart simulations
fall consistently below the exponents from the Arms-
Hama simulations. We do not know if this is just due to
a greater effect from the meshing in the Biot-Savart cal-
culations or if there is some actual stabilization in this
case. Notice that for an amplitude of 0.0151 we do ob-
serve a small negative growth exponent for the Biot-
Savart simulation.

The existence of recurrence has often been closely in-
volved with the existence of solitons in the system, espe-
cially in the case of the KdV-equation simulations of Za-
busky and Kruska® where the recurrence time was deter-
mined by the relative velocities of a large number of ob-
served solitons. In our vortex simulations we see only a
single localized wave created in each recurrence cycle for
wave amplitudes in the simple-recurrence range, along
with a significant remnant of the periodic wave form.
Here, we define a “localized wave” as a region of the
vortex wave with significantly greater amplitude than the
surrounding wave form. This localized wave is observed
to travel along the vortex core, reflecting off the boun-
daries. It has not yet been rigorously identified with the
Hasimoto soliton.> When the initial wave amplitude is
increased beyond the limit of Eq. (10), into the region
where two pairs of sidebands are unstable, two separate
localized waves are observed, again behaving like soli-
tons. We have found no other relationship in our system
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FIG. 3. Stability analysis of Ref. 7 compared to simulation.
Error bars are < 250 sec ~'. The values shown are the growth
exponents of the n — | sideband; the observed exponents for the
n+1 sideband agree within the error for all amplitudes except
the amplitude on the extreme right in the Biot-Savart simula-
tion. There the n+ 1 exponent was 1700 sec ~' lower than the
n—1 exponent.
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between the recurrence behavior and the localized wave
properties.

Because of the time-intensive calculations needed to
solve the Biot-Savart equation, we have explored the re-
currence behavior only for the Arms-Hama equation.
We have run a very few long-time simulations using the
Biot-Savart law to confirm that recurrence does indeed
occur in this equation also.

This is the first report of the Benjamin-Feir instability
and recurrent behavior on vortex cores. In addition, it
provides a mechanism by which solitons can be generat-
ed on vortices, particularly in the confined-chaos region.
This is also the first report of solitary-wave behavior on a
quantized vortex line in “He, although it could have been
anticipated from Refs. 2 and 3. The sideband instability
and recurrence behavior are not limited to the geometry
of planar waves on straight-line vortices; we have ob-
served both phenomena in simulations of helical waves
on vortex rings. The calculations reported here of
Kelvin-wave instability are for a free system, not a
driven system as in experiments in liquid helium. Fur-
ther work is needed to learn how to describe a driven
vortex wave and to couple ions, the most important mi-
croscopic probe in use today, to the vortex line. Since
the dispersion relation of helical waves and solitary
waves are closely related,? the observations of Ashton
and Glaberson'? of a broad resonance related to the
dispersion curve of Kelvin waves do not prove that stable
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Kelvin waves were generated in their experiments.
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