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Localized Traveling Wave States in Binary-Fluid Convection
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We report on convection in horizontal layers of an ethanol-water mixture in a rectangular and an an-
nular container heated from below. When the temperature difference hT exceeds a critical value, local-
ized regions of traveling-eave convection evolve via a backward bifurcation in both geometries and coex-
ist with the conduction state for a range of hT. The size, shape, wave number, and frequency of the lo-
calized states are reproducible and geometry independent. The coexistence range stands in contrast to
systems with a potential, where droplets of a given phase are not stable for first-order transitions at fixed
values of the thermodynamic fields.

PACS numbers: 47.20.Bp, 47.25.—c

Convection in binary-fluid mixtures has attracted con-
siderable theoretical' and experimental '2 interest re-
cently. This is largely because the transition from con-
duction to convection yields a time-periodic state which

consists of traveling waves (TW), i.e., of convection rolls
which move in a direction perpendicular to their axes.
Particularly intriguing has been the observation that a
backward bifurcation, analogous to a first-order phase
transition in thermodynamic systems, can lead to local-
ized traveling waves (LTW) which coexist with regions
of pure conduction for a range of temperature differences
dT. ' A coexistence range for the two phases stands in

contrast to thermodynamic systems, where the existence
of an extremum principle assures that two phases coexist
in steady state only for a unique temperature when the
other thermodynamic fields are held constant.

It has been suggested that the observed coexistence
range of LTW and conduction can be explained by the
interaction of the TW with the short sidewalls of the rec-
tangular containers of the experiments. ' ' Indeed,
numerical calculations based on two coupled Ginzburg-
Landau (GL) equations and reflection of the TW from
the wall towards which they are traveling were able to
reproduce some features of the early experiments. '~ We
report in this Letter quantitative measurements of the
size, shape, wave number, frequency, and convective heat
transport of LTW in both rectangular and annular con-
tainers. We find that the localized states have essentially
identical properties in the two geometries. Since the an-
nulus has no sidewalls parallel to the roll axis, reflection
cannot be invoked as a stabilizing mechanism.

Our observations agree qualitatively with theoretical
work by Thual and Fauve. These authors initially stud-

ied a single GL equation with real coefficients. In com-
mon with thermodynamic systems, this equation has a
potential which is a minimum for the steady state. From
it they were unable to produce stable LTW states. How-

ever, with complex coefficients (appropriate for describ-

ing binary-fluid convection) this equation has no poten-
tial. In that case, Thual and Fauve found a coexistence
range for LTW and conduction. Their localized states

have unique spatial extents and wave vectors which de-
crease from the trailing to the leading edge, in common
with our experimental observations. However, the en-
velopes of their LTW move with a characteristic speed in
the laboratory frame, whereas in our experimental sys-
tem these envelopes are at rest in steady state.

We used identical mixtures of 25.0% by weight etha-
nol in water in both a rectangle of height d 0.363 cm
and height-to-width-to-length ratio I:2.0:22, and an an-
nulus of height d 0.354 cm and height-to-(radial
width)-to-(mean circumference) ratio of 1:2.0:63, under
otherwise nominally identical conditions. Both cells had
Delrin sidewalls which were sealed to the top and bottom
plates with 0 rings. Otherwise the apparatus and pro-
cedure were similar to those described elsewhere. ' Sha-
dowgraph flow-visualization and heat-flux measurements
could be made. The top plates of the cells were main-
tained at 26.0'C. The critical temperature difference
was hT, =—1.53'C (1.62'C) for the rectangle (annulus).
We estimate a mean separation ratio' y= —0.08, a
Lewis number of 0.01, and a Prandtl number of 19. The
convective threshold was found by incrementing the heat
current q applied to the bottom plate in steps of 0.1%
through its critical value q, and waiting for times of ap-
proximately 100',, , where r,, =-120 sec is the vertical
thermal difl'usion time d /ic with a. the thermal diffu-
sivity. For the critical Rayleigh number R, we find R,

1966 for the rectangle and R,' 1933 for the annulus.
The threshold shift e, R;/R; —

1 0.017 ~ 0.003 is
consistent with the stabilization predicted to occur in a
finite-length cell because of reflection of traveling waves
from the end walls, and with other experimental observa-
tions. ' Below we will scale all lengths by d and times
by r,

After increasing q above q„counterpropagating TW
occupied the entire rectangle during the early stages of a
transient. At intermediate times, this convective flow
evolved into confined domains of primarily left-going
TW and right-going TW in the left and right halves of
the rectangular cell, respectively. During nominally
identical experimental runs a LTW state on the left or
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FIG. 1. Shadowgraph images of steady-state convective flow

patterns in the rectangle and in the annulus. The TW in the

annulus are moving counterclockwise, and those in the rectan-

gle are moving to the right.

FIG. 2. Space-time contour plots of the shadowgraph signal
for a double-LTW state in the rectangle: (a) Near the convec-
tive threshold (e —0.004) and (b) just prior to losing the
right-hand LTW near the saddle node (e —0.014).

on the right, or on both ends, would survive at later
times. Its envelope would move in the direction of the
TW, and come to rest near the end wall. During the
transient the frequency of the TW decreased quickly
from ra=-6, which is very near the Hopf frequency, to
ru 2.70. The transient evolution in the annulus was
similar in the sense that convection began throughout the
system when hT, was first exceeded, and at later times
evolved to one or more LTW which had sizes, frequen-
cies, and wave vectors similar to the LTW states in the
rectangle. Once formed, the LTW states in the annulus
initially also moved in the direction of their TW, but
eventually they came to rest. Within our resolution, the
LTW position approached its equilibrium value exponen-
tially, with a characteristic time of about 200r, Typical
steady states are shown in Fig. l.

To make clear the traveling-wave nature of the con-
fined rolls, we show in Fig. 2 space-time contour plots
corresponding to a double-LTW steady state in the rec-
tangle. Each contour line is obtained by taking an aver-

age of the shadowgraph signal over the central 50% of a
particular image for each position along the length of the
cell. The lines are spaced 0.56r, , apart, with time in-

creasing from bottom to top. In Fig. 2(a), the envelopes
of both LTW are at rest near their respective sidewalls.
While this is a stable state near threshold, the LTW do
not always remain against the wall; after decreasing e

R/R, —1 below a certain value, the envelopes moved
in a direction opposite that of their respective TW, thus
approaching each other. The movement after a change
in e is a transient, and the envelope came to rest at a new
location after some time, as shown in Fig. 2(b) for

—0.014. This movement, in a direction opposite the
confined TW, is a characteristic feature at sufficiently
negative t. ; we also observed it for LTW states in the an-
nulus, and for single LTW states of either left- or right-
traveling waves in the rectangle. Making e less negative
reversed this process. This movement of the LTW en-
velopes proves useful, in that it allows us to prepare and
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FIG. 3. Heat transfer for a single-LTW state in the annulus
(open circles); single-LTW state of right-traveling waves in the
rectangle (solid circles); double-LTW state in the rectangle
(solid inverted triangles); and single-LTW state of left-
traveling waves in the rectangle following loss of the right-
traveling state in the two-state case (open triangles). (a) Re-
duced Nusselt number N 1 vs e. (b) Norma—lized Nusselt
number (N 1)A/nA, for data in (a), wh—ere n is the number
of LTW states in the cell, A, is the lateral cross-sectional area
of the rectangle, and 8 is the area of the cell under considera-
tion.

l
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analyze states in the rectangle which have negligible in-

teraction with the walls. This is particularly useful when

making detailed comparisons between observations in the
rectangle and annulus.

One method of comparing convective states in the two

geometries is to examine the heat transport in each sys-
tem. In Fig. 3(a) we show heat-transfer data corre-
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sponding to the runs described above in terms of a re-

duced Nusselt number N —1, where 1V is defined as the

ratio of the effective thermal conductivity of the fluid

layer to that due to thermal conduction alone. The dif-

ference in Nusselt number for the various runs can be at-
tributed to the different relative areas of the convecting
and conducting regions. To demonstrate this, we divided

the reduced Nusselt number by a factor nA, /A, where n

corresponds to the number of LTW states present, A, is

the lateral cross-sectional area of fluid contained in the

rectangular cell, and A is that area for the cell in ques-

tion (rectangle or annulus). In Fig. 3(b) we plot the

quantity (N —l)A/nA„as a function of c for the data of
Fig. 3(a). It is evident that the heat transported convec-

I(x) IpF (x)cos [8(x)] +Is, (la)

where Irr is a linearly varying background term which
accounts for experimental effects, and F(x) describes an

envelope centered about x xp given by

tively, per LTW state, is essentially the same for all the
observed states.

For further comparison between the LTW states in the
rectangle and annulus, we fitted a function derived'
from a fifth-order Ginzburg-Landau equation with com-
plex coefficients to individual contour lines I(x) by a
least-squares method. The function describes both the
rapid variation of the individual convective rolls and an
overall envelope. It is

F (x) =qexp[2m(x —xp)] [r) —1+ (1 —r)/2+ (r)/2)exp[2m(x —xp)]) }

Its characteristic width l, defined as the full width at half
maximutn of F(x), is

(lb)

I -ln [1+6/r) + (2/r) ) [3(3+ r) )] ' [/m .

The cosine argument

8(x) -[kp+k K(x)](x xp)+P,

(1c)

(ld)

with

K(x) -sgn(x —xp)m [1 —F'(x)] 'i'

x [I+(~—1)~'(x)]'", (le)

describes the rapid variation of the convective pattern.
We found p to vary linearly with time, with p equal to
the traveling-wave frequency rp. In Figs. 4(a) and 4(b)
we illustrate two examples. An LTW state in the an-
nulus near onset (s= —0.001) is shown in Fig. 4(a).
Here, the rolls are moving to the right as indicated by
the arrow. Similarly, in Fig. 4(b) we show a LTW state,
also of right-going TW, from the rectangle at s
=- —0.013, where the center of the LTW, as discussed
above, has moved away from the right end wall. The
values of the parameters are given in the figure caption.

In Fig. 5 we plot values of l vs e for both the annulus
and the rectangle. The error bars represent the standard
deviation about the mean value of 1 obtained from fitting
between 30 and 100 consecutive scan lines at each e.
The data vary little over the range of s shown. More im-

portantly, there is no significant difference between the
two geometries, and 1=-5.0 for both systems.

A remarkable property of the LTW states implied by
Fig. 5 is their stability for positive e, where the conduct-
ing state is unstable. One possible explanation might be
stabilizing azimuthal concentration variations induced by
the LTW. We ruled this out by cycling the annulus to
the conducting state below the saddle node and once
more to positive e. Convection began uniformly rather
than being localized at the old LTW location as would
have been expected. Another possibility is that, under
conditions where the conducting state is convectively but
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FIG. 4. Fit of Eq. (1) to shadowgraph-intensity data (solid
circles) for LTW's. The background Is has been subtracted.
Both 1(x)—ls and the envelope [IOF(x) and —IsF(x)] are
shown as solid lines. (a) Annulus (c= —0.001, m 0.94, r)

0.11, ko 2.99, k i
—0.41, I 5.05). (b) Rectangle (e

= —0.013, m 0.93, rl 0.08, ko 3.16, ki —0.40, I 5.16).
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1.0 at the saddle node. Likewise, the phase velocity of
convection rolls in the annulus attains a maximum value
near 1.0 at its saddle node.

It is important to note that the LTW studied by us
differ qualitatively from those observed by Kolodner,
Bensimon, and Surko' for different experimental pa-
rameters. Theirs had a spatial extent which depended
upon the experimental protocol, whereas the ones dis-
cussed here have a unique size.

We wish to thank H. R. Brand, M. C. Cross, P. Ko-
lodner, and W. Schoepf for helpful conversations, W.
van Saarloos and P. C. Hohenberg for communicating
their theoretical results to us prior to publication, and
the IBM Corporation for support for one of us (J.N. ).
This work was supported by the Department of Energy
under Grant No. DOE 84ER 13729.

FIG. 5. The width I as a function of e for LTW states in the
rectangle (solid circles) and annulus (open circles).

not absolutely unstable, perturbations, which travel as
they grow, cannot reach an observable amplitude before
encountering the LTW. Since we cannot estimate the
amplitude of such fluctuations we cannot predict when
this might occur, except that it should be for m~0. 06
where we estimate2 the conducting state becomes abso-
lutely unstable. Experimentally, however, we have not
observed LTW states to be stable in the annulus for
t. & 0.0l.

The TW frequencies of the various localized states are
all about half the Hopf frequency, and increase some-
what with decreasing e. The frequency in the annulus
rises from about ro 2.50, for the steady state at onset,
to ro 3.04 at the saddle node. In the rectangle we ob-
served it to increase from ro 2.53, for a LTW state of
left-going rolls at onset, to a maximum of ro 3.09 at the
saddle node. The measured frequencies of the left-TW
and right-TW states with two LTW present in the rec-
tangle can differ by as much as 6% at a given value of e.
There is a similar difference in the wave number, al-
though the phase velocity ro/ko has nearly the same
value and increases with decreasing e to a maximum of
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