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We present a renormalization-group (RG) approach to the nonlinear diffusion process B,u DB u,
with D —,

' for 8'u )0 and D (1+e)/2 for 82u (0, which describes the pressure during the filtration

of an elastic Auid in an elastoplastic porous medium. Our approach recovers Barenblatt's long-time re-
sult that, for a localized initial pressure distribution, u(x, t)-t ' v"f(x/lt, e), where f is a scaling
function and a e/(2 ne)'t'+0(e~) is an anomalous dimension, which we compute perturbatively using
the RG. This is the first application of the RG to a nonlinear partial differential equation in the absence
of noise.

PACS numbers: 47.55.Mh, 47.25.Cg, 64.60.Ak, 64.60.Ht

Buckingham's II theorem' states that the dependence
of a physical quantity on a set of dimensionful parame-
ters may be expressed as the dependence of a dimension-
less quantity II on dimensionless combinations IIp, lI|,
. . . ,II„of the governing parameters:

is well defined:

Hi Ti„
lim = lim IIp 'f IIp,

l1p 0 Qp Ilp 0
(2)

This elementary result is the root of dimensional
analysis, and, as is well known, has an extraordinary
range of applications. Of particular importance is the
application of this result to the solution of partial
differential equations (PDE's) describing inter alia the
time-dependent behavior of a system away from equilib-
rium. Examples of current interest are the approach to
equilibrium of a binary system quenched into the two-
phase region of the phase diagram, diffusion-controlled
crystal growth, and hard thermal turbulence.

In these and other examples, one is typically interested
in the limit when one of the dimensionless variables, IIp,
tends to zero; here we will focus on the case in which this
corresponds to the long-time behavior of the system of
interest. For example, in spinodal decomposition, as
time t ~, the structure factor S at time t as a function
of wave number k obeys the scaling law S(k, t) =1(t)"
xF(kl(t)), with /(t)-t~. In velocity-selection prob-
lems, such as those related to dendritic crystallization,
the steady-state solution of an evolution equation is of
the form u(x, t) =f(x —vt) Transfor. ming x =lnX,
t =lnT, and u(x, t) =U(X, T), this solution can be ex-
pressed in the form U(X, T) F(XT '). The central
problems are (1) to evaluate the exponents appearing in

these solutions, such as p and v in the examples above,
and (2) to account for the stability of the scaling form.

In many cases, Buckingham's H theorem is sufficient
to solve the first of these problems. However, as has
been discussed at length by Barenblatt, there is an even

larger category of situations where simple dimensional
analysis fails: the function f in Eq. (1) is not well

defined in the limit H0 0. Instead, the following limit

with the exponents a, ai, . . . , a„being real parameters,
not determined by dimensional analysis, but determined,
in principle, by the diff'erential equation obeyed by f. In
the example of velocity selection in dendritic growth, the
velocity corresponds to an exponent of the above type,
and is determined by a solvability condition.

The purpose of this Letter is to show explicitly that
these exponents are nothing other than the anomalous di-
mensions of field theory, and can be computed using the
techniques of the renormalization group (RG). We il-
lustrate our ideas by solving a nonlinear diffusion equa-
tion, discussed by Barenblatt and Sivashinsky, using
renormalized perturbation theory and comparing with
the exact solution. To our knowledge, this is the first
time that the renormalization group has been used in this
way. We believe that methods similar to those used here
will be useful in studying the more interesting physical
situations mentioned earlier. '

We start with the one-dimensional nonlinear diffusion
problem

8, (x, t) =D 112u(x, t),

where D= —,
' for B„u)0 and D=(1+e)/2 for tl„u (0.

This equation, hereafter referred to as Barenblatt's equa-
tion, describes the filtration of a compressible fluid
through an elastic porous medium which is irreversibly
deformable. It is readily verified that, with the choice
of diffusion coefficient given above, the sum of two solu-
tions to Barenblatt's equation does not constitute a third
solution, showing that the equation is indeed nonlinear.
The value of e is determined by the elastic constants of
the fluid and the porous medium. We consider the case
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when the initial condition is given by

u(x, O) =g(x) = exp
Qo X

(2lrl ) ' 2l

and we seek solutions which vanish at infinity. When
e =0, the equation is simply the diffusion equation; with
the stated initial conditions, the solution at large times
t )) I /D is of the form

lim u(x, t) =t ~ "f(xlJt ) (e =0),(~ OO

(5)

lim u(x, t) =t '/2f(xldt, e) (ceo),(~ OO

(6)

where the scaling function f is twice differentiable. No-
tice that I is absent from Eq. (5). In fact, the limit of
Eq. (5) can also be attained by keeping t fixed, solving
the initial-value problem, and then taking the limit
I 0.

Now consider the case when t. ~0. The natural exten-
sion of Eq. (5) is that

where the scaling function f is twice differentiable. Re-
markably, this is not the case. Substituting the Ansatz
Eq. (6) into Barenblatt's equation, one obtains two ordi-
nary differential equations in the variable g= x—/ Jt O. ne

equation is valid for B,u )0, while the other is valid
when 8 u &0. As shown in Ref. 7, it is not possible to
match the solutions across the point where B„u =0. A
general theorem due to Kamenomostskaya" proves that
the initial-value problem has a unique solution with con-
tinuous derivatives in x up to second order; hence we
conclude that there is no nontrivial solution to Baren-
blatt's equation of the form of Eq. (6).

To investigate the actual form of the solution of
Barenblatt's equation, we construct a perturbation
theory in e about the conventional linear difI'usion equa-
tion. A priori, one might reasonably expect a naive ex-
pansion to fail, given that the introduction of e has ap-
parently made a qualitative change to the solutions.
Nevertheless, the breakdown of the perturbation expan-
sion is controllable using the renormalization group. The
formal solution to Eq. (3) is

t ( t
u(x, t) =„dyG(x —y, t)g(y)+ — ds dy G(x y, t ——s)8[—B,u(y, s)]lieu(y, s), (7)

1 xG(x, t)=,/, exp

where 8 is the Heaviside step function and G is the
Green's function The first-order term is calculated straightforwardly using

the zeroth-order solution in the Heaviside function. As
anticipated, ul diverges as t ~, or equivalently, as
I 0. We find that

On dimensional grounds, u depends on x/ Jt, I/Jt, and
t. . Writing

u(x, t) up(x, t)+eui(x, t)+ ' ' '

we find that the zeroth-order term is simply

e
—x /2t dwe

—w /2(w2 l)Qo 2
r I ds

4tt Jf
+regular terms+0(l ),

so that the singular part of u 1 is given by

Qo x'
[22r(t +I )] ' ' 2(t +I') (io)

, /, ln —, up(x, t).1 t

2' '" I' (i2)

u(x, t) = Qo zx /2(
1

(22rt ) '" , /2
in —

2
+O(e ) +nonsingular terms.2

2ze '" I' (i3)

We chose to treat the divergence of the bare perturbation theory by regarding 1 as a regularization parameter. The
theory can be rendered finite in the limit 1 0 by introducing the renormalized variable

uR(x, t) =Z(l/p)u(x, t), (i4)

where the subscript R denotes the renormalized quantity. The renormalization constant Z is introduced to absorb the
divergences as 1 0, and so depends upon I and e. Z being dimensionless, we must also introduce a new quantity with
the dimensions of length, which is denoted by p. The renormalized variable uR is independent of 1, and
so is finite as I 0. We proceed by expanding Z =P„-pa„(l/p)e" with ap= i. The coefficients a„ for n ) I are deter-
mined order by order in e in such a way that the divergences in ut are cancelled out. To O(e), we obtain

1
Q]

ln(C(p /I )

(22re) '/2 (is)
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Notice that this expression for uR is manifestly finite as
I 0. The length scale p is still undetermined, and
indeed is arbitrary; this is essential for the following

steps.
At this point, we need to make contact with the

initial-value problem: Eq. (16) apparently describes a
family of solutions. We choose a particular solution by
insisting that, e.g. , at the origin at some given time t

ut(t0, t ) has the value Q(t ). Then the corresponding
particular solution is

uR(x, t)u*(x, t) -g(t*)
ug (O, t )

(17)

The requirement that uR has a certain value at a certain
time and place is enough to determine all the arbitrary
constants Cl, . . . which are introduced during the renor-
malization procedure. It is straightforward to verify that
this occurs to O(e), and we obtain

u/t (x, t) -g(t') -x 2/2te

1
— ln +O(e ) . (18)

(2ze) ' '

This perturbative expression is valid at best when

t -t; otherwise, the terms in the perturbation series are
not small. However, we have not yet made a specific
choice of t and Q(t ). This arbitrariness corresponds
to the arbitrariness in choosing the length scale p, which

has now disappeared from the expression for uR. We
can exploit this arbitrariness as follows: Suppose that we

wanted to know the behavior of the solution with given
initial conditions at a time of, e.g. , I x10 sec. If we

knew the value of Q at time t 5 sec, then we could, in

principle, use the perturbation series (18) to obtain the
required value. The result would, of course, be meaning-
less, because of the poor convergence of the perturbation
series. On the other hand, if we knew the value Q at a
time T** close to 1 x 10 sec, then the series would

indeed be useful in estimating the required value of uR.
The important point is that we require that the value
Q(t**) be that which we would have obtained if we had
solved the initial-value problem with uR(O, t*)=Q(t*),
found the value of uR(0, t**),and then set this equal to
Q(t**).

This desideratum can be achieved using the renorm-
alization-group argument of Gell-Mann and Low. ' The
function uR represents the solution of the specific
initial-value problem of Barenblatt's equation which has

where Ci is an arbitrary constant, which will turn out to
be unimportant. Thus

—x /2f

2ze '" Cp'

(16)

the value at the origin of Q* when t =t*. The actual
solution does not depend upon the choice of the time t
Thus

Cu/t (x, t)
ct*

P= —
Q —+1

(2ne)' '

Integrating this equation, we obtain

g (t 4 ) (g t 4 )
—[l /2+ e/(2 8 ) ' ']

(20)

(21)

where 8 is a constant of integration determined by the
initial conditions. Finally, we insert this value into Eq.
(18) and set t t, which we are entitled to do. Hence
we obtain

u (x t) eR
1 /2+ a (22)

with the anomalous dimension a e/(2tre)'/+O(e ).
We have verified that this result agrees with the exact re-
sult reported in Ref. 7. Furthermore, we have extended
the perturbation-theory calculation to second order in e,
verifying that the logarithms in the perturbation series
do indeed sum up the way that the RG predicts, and
finding that the coefficient of the t. term in a is approxi-
mately —0.102.

We have shown that the asymptotic behavior of u

changes from u-t '/ to t ' +' upon the introduc-
tion of the nonlinearity into the diffusion equation. The
anomalous dimension a here has an origin similar to that
at the critical point of a field theory: Even though the
characteristic length scale (the width of the diffusion dis-
tribution in one case, the correlation length in the other)
is large compared to the microscopic cutoff (the initial
distribution width in one case, the lattice spacing in the
other), the latter cannot simply be set to zero, because
the theory is not well defined in this limit. Consequently,
the microscopic length must be included in the dimen-
sional analysis: The values of the (critical) exponents
differ from those predicted without taking into account
the microscopic length scale.

We conclude with some remarks and speculations.
First, the example presented here is important because it
demonstrates that the RG can be applied to PDE's
without adding a noise source. Noise is believed to be ir-

relevant during the scaling regime of spinodal decompo-
sition; its inclusion in current RG approaches to the
problem of turbulence' is an unsatisfactory feature.

+ ' =0. 19
Bu/t (x, t) au/t (x,t) tig

Bt ting Bt

The quantity p—= t BQ/dt is analogous to the p func-
tion in field theory: It describes how the value of Q
varies as t* is varied, so that the function uR remains
unchanged as the solution of the specific initial-value
problem of Barenblatt's equation.

We can evaluate p(Q) perturbatively from the expres-
sion ug. We obtain
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Second, our work establishes a connection between inter-
mediate asymptotics and the RG, which is explained in

more detail elsewhere. ' The exponents faj in Eq. (2)
are in general computable as the solutions of a nonlinear
eigenvalue problem. Are there analogous equations
for critical exponents in general? Finally, our calcula-
tion can be interpreted from the Wilson formulation of
the RG. ' There are close similarities between our work
and the method of Lie groups. ' We anticipate that this
will prove useful in numerical calculations; in particular,
we hope that work along these lines will facilitate a sys-
tematic development of qualitative numerical methods,
such as the cell dynamic schemes which have proved use-
ful in studying phase separation' and solidification. '
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