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In high-temperature QCD, an infinite set of higher-loop diagrams must be resummed in order to com-
pute the gluon damping rates to leading order in the coupling constant. After resummation, the damp-
ing rates, as determined by the positions of the poles in the gluon propagator, are gauge invariant.
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Recently, there has been much controversy concerning
the damping rates in perturbative QCD at high tempera-
ture."'? Attention has focused on the plasmon, which is a
collective, longitudinal mode of the gluon. Explicit cal-
culations appear to show that the magnitude and even
the sign of its damping rate is gauge dependent. Both
the plasmon and the transverse modes of the gluon are
physical degrees of freedom, and their damping rates are
determined by the position of the poles in the gluon prop-
agator. These rates are physical quantities, and must be
gauge invariant if computed correctly.

The apparent gauge dependence occurs because the
calculations done to date are incomplete— there are dia-
grams of higher order in the loop expansion which con-
tribute to the same order in the coupling constant g as
the one-loop diagram.?3 As suggested in Ref. 4, these
higher-order effects can be systematically resummed into
effective propagators and vertices. In this Letter, we
prove that this resummation cures the problem of the
gauge dependence of the damping rates: When all terms
of leading order in g are computed by using effective
propagators and vertices, the gluon damping rates are
gauge invariant. This work is an application of the gen-
eral program of resummation developed in Ref. 5.

We use the imaginary-time formalism to compute at a
nonzero temperature 7. In momentum space the propa-
gator for a scalar boson is A(P)=1/P2, P*=(p°p),
where P2=(p®)2+p?, and in imaginary time p°=2x,T
for integral j. Amplitudes in real time are obtained from
those in imaginary time by analytically continuing the
discrete p° to a continuous Minkowski energy, p®= —i
X®.

At high temperature, the average momentum of mass-
less fields is of order T through interactions, these fields
acquire “‘masses”’ of order g7. After analytic continua-
tion, a momentum is ‘“soft” if all of its components,
and p, are of order g7, and “hard” if any component is
of order T. The distinction between hard and soft mo-
menta is crucial, for it separates amplitudes which re-
quire resummation from those for which ordinary pertur-
bation theory applies. For amplitudes with hard external

legs, perturbative corrections are uniformly down by at
least one power of g. In contrast, if every external leg of
an amplitude is soft, there are loop corrections which are
g*T?*/P? times the corresponding tree amplitude, where
P is a typical soft external momentum. Since P is of or-
der g7, these corrections are as important as the tree
amplitude. We call such corrections ‘“hard thermal
loops,” for they arise from diagrams with hard loop
momentum and are due solely to thermal fluctuations.*

The simplest example of a hard thermal loop is from
the tadpole diagram, which is proportional to the in-
tegral TrA(K) = T?/12. The other integrals which gen-
erate the hard thermal loops in N-gluon amplitudes are
of the form

JHTEN Py - Py)
=TrK" - - K"A(P,—K) - - A(Pv—K).
(1)

K* is the loop momentum, with Tr=TZkofd3k/(27r)3.
The hard thermal loop in the integral is the term propor-
tional to 7'%; we use the symbol = to indicate that the
function ' "#* includes just this part of the integral.

Before discussing general properties of hard thermal
loops, we list those which are needed for the gluon damp-
ing rate at leading order. We assume an SU(N,) gauge
theory with N, flavors of massless quarks in the funda-
mental representation. The hard thermal loop in the
gluon self-energy 8IT*" was first calculated by Silin and
co-workers, ®~8

sM1**(P) =4g*(N.+ 3 No)[7*(0,P) — § 6**TrA(K)] .

2

The contribution of the quark loop involves fermionic
propagators, but hard thermal loops obey identities®
which allow this to be rewritten entirely in terms of in-
tegrals over bosonic propagators; these identities are
used below in (3) and (4) as well.

Denoting the three-gluon amplitude by —igf?
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xI'***(P,Q,R), the hard thermal loop is
sT**(P,Q,R) = —8g%(N.+ £+ No)I**(0,P,— Q). (3)

For the four-gluon vertex we only need the amplitude
traced over two color indices. Denoting this component
by —g2N.8°°r**°(P,Q,R,S), the hard thermal loop is

sr**°(P,Q,R,S) =16g%(N.+ % Ny)
xJ**(0,P,P+R,—S). (4)

In Ref. 5 we show that hard thermal loops arise only
in the amplitudes between N gluons or between a quark
pair and N —2 gluons. They possess several remarkable
properties.

Hard thermal loops arise just from one-loop sub-
diagrams.— At soft P one-loop amplitudes develop terms
proportional to T2, but never to higher powers of 7. All
one-particle irreducible diagrams at higher-loop order
are smaller by powers of g. Hard thermal loops arise
just from the region of integration in which the loop
momentum K is hard, from diagrams with sufficiently
many powers of K in the numerator. Diagrams with
external ghost lines do not have hard thermal loops, be-
cause the relevant integrals always have one less power
of K than those in (1).

Hard thermal loops are gauge invariant.— Klimov
and Weldon® showed that the hard thermal loops in the
self-energies are the same in any covariant gauge. We
have proven that for arbitrary amplitudes, the hard
thermal loops are the same in any covariant or
Coulomb-type gauge:> On these grounds we assume that
this holds in all gauges. This gauge invariance is unex-
pected, for the external momenta need only be soft, and
do not have to be on the mass shell.

Hard thermal loops satisfy simple Ward identities.
—The Ward identity for the hard thermal loop in the
gluon self-energy shows that it is transverse: P*8IT#¥(P)
=0. The Ward identities for the hard thermal loops in
the three- and four-gluon vertices are

R*TH*(P,Q,R) =8IT*(P) — ST1**(Q) ,
S°8T#(P Q,R,S) =6T**(P+S,0,R) (5)
—8T**(P,0+5S,R) .

The need for resummation in calculations involving
soft momenta is apparent, for when the external momen-
ta are soft, hard thermal loops are as large as the tree
amplitude.* We therefore define effective propagators
and vertices which resum all hard thermal loop correc-

tions to the bare amplitude. We denote effective propa- |

gators and vertices by a left superscript *.

The effective gluon propagator resums all insertions of
the hard thermal loop 81T in the gluon self-energy. The
transverse part of the effective inverse propagator is
*AL'(P)=P25" —PrPY—8T1*(P), where OIT* s
given in (2). *A 7! is transverse because of the Ward
identify satisfied by 8IT*". The effective propagator is
obtained by adding a gauge fixing term to *A ™' and in-
verting. The difference between the effective gluon prop-
agator in covariant gauge *A** and that in Coulomb
gauge *A¢" has the form

*ARV(K) —*AR(K) =K"K"*A(K)
+ (n*KY+K*n")*A,(K), (6)

where n*K* =k°. For example, in the Feynman gauge,
*A(K) =kg *A(K)/(K?)? and *Ay(K)=—k°*A/(K)/
K2, where *A;(K)=1/[k*—6M1®(K)]. The covariant
propagator satisfies

*An '(K)*AM(K) =8""— K*K'/K?, @)
A (KInv*A(K) = (Kn* — k°K*) [k *. (8)

These identities are helpful because while effective quan-
tities enter into the left-hand sides, the right-hand sides
are free of them.

The effective vertices are formed by adding the hard
thermal loop to the bare vertex: *I'=I+6I". The Ward
identities satisfied by the effective vertices follow im-
mediately from (5). Because of the simplicity of (5),
they are identical in form to the Ward identities for the
bare vertices. There are no hard thermal loops for am-
plitudes with external ghosts, so the ghost propagator
and the ghost-gluon vertex remain the same as in the
bare expansion.

To calculate systematically, loop integrals must be
separated into integrals over hard and over soft momen-
ta.> Soft lines require effective propagators, while bare
propagators are used for hard lines. If all the legs of a
vertex are soft, an effective vertex is needed; otherwise a
bare vertex suffices. In the resulting diagrammatic ex-
pansion, only a finite number of diagrams contribute to
any fixed order in g.

We apply the effective expansion to the gluon self-
energy at soft external momentum. We define the
effective self-energy for the gluon *IT** to be the one-
particle irreducible correction to the effective propagator
*A*Y. The three diagrams with soft-loop momenta
which contribute to *IT at order g, *IT="*ITs; +*Il4,
+ *I,4, are shown in Fig. 1. In covariant gauge, they
are

*T4 (P) =+ 82N, Tr(sor) *T**(— P+K,P, —K)*AM (K)*T*"9' (= K,P,— P+K)*A°°(P—K) , 9)
*g (P) = — § g2 Treor *T**°(P, — P,K, — K)*AM(K) (10)

N4 (P) =g N, Tr(sor)K*(P—K) "A(K)A(P—K) .

a1
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FIG. 1. One-loop diagrams that contribute to the effective

gluon self-energy *IT**. The solid circles represent effective
propagators and vertices.

The gluon loops in (9) and (10) differ from those in the
bare expansion only in that everything is “starred”: bare
propagators and vertices are replaced by effective quanti-
ties. The ghost loop in (11) is the same as in the bare
expansion. In (9)-(11), Tr(pof) indicates that the in-
tegral only runs over soft k. For kinematic reasons, at
leading order this is the only region which contributes to
the discontinuity of *IT on the mass shell and hence to
the damping rates.’

In Coulomb gauge the effective self-energy to order g
is *TMc="*Mc 3, +*Mc 4, +*Mcen. The terms from a
gluon loop, *Ic 3, and *Ic 4,, are obtained by replacing
each covariant propagator *A*" in (9) and (10) with
Coulomb propagators *A#*. The Coulomb ghost contri-
bution *I¢ g is the same as in the bare expansion.

For a physical mode, the position of the pole in a prop-
agator is a gauge-invariant quantity. At lowest order,
the poles in the effective gluon propagator are deter-
mined by the mass-shell condition

*An ' (Pef(P)=0, (12)

where e!(P) is the gluon wave function. At nonzero
temperature, there are three physical modes labeled by
the index i: the two transverse gluons and the longitudi-
nal plasmon. Since the hard thermal loop in the gluon
self-energy is gauge invariant, so is *A !, and hence the
mass shells for transverse gluons and plasmons. Their
detailed forms are given in Refs. 6-8. The gluon wave
functions depend upon the gauge; in Coulomb and co-
variant gauge, they are related by

et ;(P)=e*(P)—P"p-¢;(P)/p?. (13)

Beyond leading order, positions of the poles are deter-
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mined by the zeros of the effective inverse propagator
*Au ' —*I1*. If all one wants is the shift in the mass-
shell condition to order g, we can take a shortcut. Con-
struct a “two-gluon T matrix” by sandwiching the
effective self-energy between physical wave functions: in
covariant gauge, T =e!*I1"%¢}. (Henceforth we
suppress the dependence of T j, *I1*Y, and el on P, T;;
and e/ are of course defined with P on the mass shell.)
Then it can be shown that the only terms in *IT*" which
shift the position of the pole are those which contribute
to the 7 matrix. For small momentum, the real part of
the T matrix gives a perturbative correction of order g to
the mass shell, which is itself of order g272.%#% The
imaginary part of the 7 matrix is of order g37'2, and its
eigenvalues are proportional to the damping rates.

To prove that the damping rates are gauge invariant,
we show that the contribution from soft-loop momenta to
the 7 matrix is the same in covariant gauge as in the
Coulomb gauge:

Tcj=et  *TIEvel j=e! *TIEe) =e! *NT*e/=T;. (14)

The proof proceeds in two steps. First, we derive the
Ward identity for the effective self-energy: P**IT*'P"
=0 for arbitrary P. To demonstrate this, the Ward
identities are used to reduce the contraction of P* with
the effective three- or four-gluon vertices in *IT3, and
*1'I4g. For instance, P* contracted with the effective
three-gluon vertex *I'*"* is equal to *A,;'(K) minus
*An'(P—K). After using (7) followed by the Ward
identities again, we find terms proportional to *A,;'(P),
which vanish upon contraction with P". The remaining
terms in P*(*T14; + *I14;) P” reduce to an expression free
of effective propagators and vertices. This cancels
against the contribution of the ghost loop, P* *TT5P". In
this way it can also be shown that the effective self-
energy in Coulomb gauge is transverse, P**IT¢"P" =0,
and that it obeys P* *IT¢e/ =0 on the mass shell. Using
the relation between Coulomb and covariant wave func-
tions in (13) establishes the first equality in (14).

To prove the second equality in (14), we use (6)-(8)
and (12) and the effective Ward identities to show that

e (*TI8Y + *TIE ey — eF (FTTEY3g + * e, e

reduces to a form free of effective quantities. This can-
cels exactly against the difference between the ghost
loops, e/ *TTgye) —e! *T¢ne}, completing the proof that
T =Tc¢. Hence the gluon damping rates, for both the
plasmon and the transverse modes, are gauge invariant
to leading order in g.

As at zero temperature, the proof is really just an ex-
ercise in using the Ward identities repeatedly. In this re-
gard, we remark that it is crucial that the effective ex-
pansion includes both effective propagators and vertices,
for only then are the effective Ward identities in (5)
satisfied.

It is also possible to prove that the damping rates are
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positive.> In Coulomb gauge, the only states which con-
tribute to discontinuities have positive weight. Using
this, a diagrammatic analysis shows that in Coulomb
gauge the sum of all cuts through the diagrams of Fig. 1
can be written as a sum of amplitudes squared; these
cuts run both through effective propagators and vertices.

In previous work,"? the plasmon damping rate was
calculated using one-loop diagrams constructed out of
bare propagators and vertices. The first explicit calcula-
tions were by Kajantie and Kapusta,? who found a posi-
tive damping rate in axial gauges. Earlier, Kalashnikov
and Klimov' pointed out that at one-loop order the
damping rate is gauge dependent in covariant gauges.
The problem was not taken seriously until the work of
Parikh, Siemens, and Lopez:?> they showed that the
damping rate is not only gauge dependent in covariant
gauges, but negative. Hansson and Zahed, and others,
then attempted to overcome the gauge dependence by us-
ing a manifestly gauge-invariant formulation.? We have
shown that this is unnecessary: Gauge invariance follows
once all terms of leading order in g are included by the
resummation of hard thermal loops. Hence resumma-
tion solves the longstanding problem of the gauge depen-
dence of the plasmon damping rate.

The need for resummation was recognized in Refs. 1,
3, and 7. A complete program of resummation, which
allows results to be computed consistently to leading or-
der in g, was proposed in Ref. 4. In Ref. 5 we develop
this program in detail: it applies not just to the damping
rate, but to all processes involving soft momentum.

Explicit calculations of the damping rate are in pro-
gress. The results are similar to those found for a heavy
fermion in Ref. 4. At zero momentum, the damping
rates are a pure number times g27. At nonzero momen-
tum, there is also a term g?T times a logarithm,
log(gT/g?T) =log(1/g). This logarithm arises from the
contribution of nearly static transverse modes. It is
cutoff naturally by including effects to higher order:
Both the damping of the field itself, and the (nonpertur-
bative) screening of static magnetic fields, provide a
cutoff at the scale g>T. We have also applied the
effective expansion to compute the production rate for
soft dileptons,® a quantity of direct experimental interest.

After this work was submitted for publication, two re-
lated works appeared. Kobes, Kunstatter, and Rebhan'°
extended previous proofs at 7=0, to show that at 70,
the physical poles in the gluon propagator have gauge-
invariant positions. Our work illustrates their general
arguments.

The hard thermal loops in N-gluon amplitudes were

also investigated by Frenkel and Taylor.!' Their results
agree with those listed after Eq. (4). An identity of
theirs was used to simplify Eq. (4). We have generalized
this identity, and used it to determine the color structure
of the hard thermal loops in arbitrary amplitudes. '?
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