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Models of unitary matrices are solved exactly in a double scaling limit, using orthogonal polynomials
on a circle. Exact diff'erential equations are found for the scaling functions of these models. For the
simplest model (k I ), the Painleve II equation with constant 0 is obtained. There are possible nonper-
turbative phase transitions in these models. The scaling function is of the form N
&f(N "1"+"(A,, —X)) for the kth multicritical point. The specific heat is f', and is therefore mani-

festly positive. Equations are given for k 2 and 3, with a discussion of asymptotic behavior.

PACS numbers: 11.17.+y, 05.90.+m, 11.15.Pg, 11.15.Tk

Kazakov's observation' that critical exponents charac-
teristic of minimal conformal matter fields occur at mul-

ticritical points of a phenomenological effective action
for gravity in two dimensions has led to a nonperturba-
tive approach2 to string theory (as yet in unphysical
numbers of dimensions) that holds much promise. It is,
of course, widely appreciated that understanding nonper-
turbative aspects of string theory is a sine qua non for
obtaining predictive physics from it. The present work
may also be of interest in gauge theories, as is indicated
below.

In this Letter, we solve unitary-matrix models exactly,
modifying the analysis of Refs. 2-4, where Hermitian-
matrix models were solved, as appropriate. The simplest
of these unitary models has been studied in the planar
approximation in the past, in connection with the
large-N approximation to QCD in two dimensions. We
find the nonperturbative solution of this problem, which
is possibly of interest for QCD as well. Besides finding
nonperturbative solutions for general actions (albeit in a
certain scaling limit described below), we also find the
planar behavior explicitly in the general noncritical k =4
model. This analysis is necessary in order to fix k pa-
rameters in the nonperturbative theory by demanding
that it agree in perturbation theory with the planar re-
sult.

It is now known that the matter fields in the multicriti-
cal Hermitian models do not belong to unitary mod-
els. The models we consider appear to lie in diAerent
universality classes from the Hermitian-matrix models.
Given the drastically diA'erent large-field behaviors of
these two types of models, we do not find this surprising.
The positivity of the specific heat may imply that tkese
unitary-matrix models correspond to unitary models.

We wish to study the behavior of

Z~ —=J dUexp[ —(N/X)trv(U+U )],
where U is a N xN unitary matrix and v(U) is a polyno-

mial in U. The surface interpretation of these actions re-
quires expanding the unitary matrices as exponentials of
Hermitian matrices, but this is natural in view of the rest
of the measure (see below). It is important to keep in

mind that the exponential function converges absolutely
on any compact domain of the complex plane, so this ex-
pansion is sensible quite independent of perturbation
theory. In the present work we restrict ourselves to the
simpler case of a potential invariant under complex con-
jugation, as indicated explicitly above. (The general
case is considered in Ref. 10.) The measure is invariant
under conjugation of U by another unitary matrix. Us-
ing this symmetry dU may be written (up to an ir-
relevant constant) as

dU =ada; A(a)A(a),

where a; are the eigenvalues of U and hh is the Jacobian
for the change of variables,

5—= g

[exp�(iak

) —exp (ia, )] .
k&j

Now ZN takes the following simpler form:

1
Ztv =— +da; hhexp ——g v z;+—

I ~l

where z;—=exp(ia, ).
The method we use to solve these models is the

method of orthogonal polynomials, '' adapted to the case
of a circle. We list some properties of orthogonal poly-
nomials on a circle, restricting to the case of actions in-
variant under the interchange z 1/z. The polynomials
will be denoted p„(z), n =0, 1,. . . . They may be normal-
ized so that

n —]

p„(z) =z"+ g at, „z'.
k 0

For measures of the restricted type that we consider, ak „
are real. The polynomials are orthogonal with respect to
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dp= d—z(2ziz) 'exp[ —v(z+1/z)] (suppressing N/k for
the nonce):

I'a 2m

d@p„(z)p (1/z) =h„B„
As explicitly indicated, we parametrize the phase of the
eigenvalues as lying in [0,2n]. ao „—=R„(c-haracterizes
the recursion relation

p„+((z) =zp„(z) +R„z"p„(1/z),
and is related to h„by h„+ )/h„= 1

—R„. A standard ob-
servation is that Zlv may be obtained as a product of the

Z N!+h; N!+
~N!+(I —R,', )~ '

which indicates why it suffices to focus on R;. By consid-
ering Ztv+)Z)v (/Zjv, one notes that the second deriva-
tive of the free energy F is given, in the scaling limit, by
F"=f . The function f is proportional to R;, and the
point of the following is the derivation of diff'erential

equations that determine f.
With these properties in hand, it is a simple exercise to

show that

(n+ I ) (h„+, —h„)

= —„dp U'(z+1/z)(1 —1/z )p„+)(z)p„(1/z) .

Using the recursion relation one derives a nonlinear
functional equation for R„. It is possible' to formalize
this along the lines of Ref. 4, but we prefer to work out a
few examples here. When (!'=I (the case studied in

Ref. 6) we find (reinstating N/X)

k(n+1)R„=NR„(R„4.(+R„()(1 R„) .-—

Setting n=N, it is clear that there is a critical point
when A.„=2, for then the roots of the limiting form of the
difference equation,

A, R =2R (1 —R ), R—=Rlv,

are degenerate. We look for a scaling solution to the dif-
ference equation we gave above by setting R~ —R,
—:Rjv =N "f(N'b), where 8=X„—k. When p = —,

'
and

v 3 we find that this is a consistent Ansatz, leading to
(x-=N'a)

—2xf+ 2f =f"

as the equation satisfied by the scaling function (with an
appropriate rescaling of x). This is the Painleve II equa-
tion. It has no critical points and its movable singulari-
ties are simple poles, as is obvious upon inspection. (The
general Painleve II equation has an arbitrary constant as
well. )

As has been observed already in the Hermitian mod-
els, the fact that this equation is second order implies
that there is a parameter in the theory that cannot be
determined by matching the asymptotic behavior of f to
the planar approximation. The extra parameter may be
identified with the position of a simple pole at a finite
value of x. Brezin and Kazakov- identified a similar
singularity with a possible condensation of handles on
the world sheet. That argument does not appear to ex-
tend simply to the present case, but if this divergence in

the specific heat signals a change in the topological
structure of the world sheet, it is tempting to think of it
as a deconfining transition in what is possibly the sim-
plest model for QCD. (This is a subtle issue, discussed
at length in Ref. 6.)

In the case u'(u) =1+gu we find

—XR, = (1 —R„)[—R„(—R„4-(+g (—R„zR„)+R„)-R„+-2R„)R-„R„+(-n+1
N

+R„R„+(
—R„+2—R„z+R„+(R„+2—) ] .

This leads to a quadratic equation in R —=R~..

~ = —2(1 —R')( —
1 g+3gR') . —

For g= —4, this reduces to 1(, 3(l —R )/2. The dif-

ference equation admits a scaling solution when p = —,',
v = —', , and the differential equation (upon rescaling) is

6xf+6f —10f—(f') —10f f"+f =0.

This equation has solutions with simple poles, but should
not be compared with the analogous equations obtained
by other workers (see below).

For the case U'(u) =1+g(u+gqu 2, we do not give the
explicit form of the recursion relation here because of its
length. At g] = —

7 and g2=, '4, this model is mul-

ticritical,

~= —'; (1 —R').

The exponents are p = —,', v= —', , and the differential
equation is

10 10xf+ 10f''f' ' &f'f"+5f'f"+—3ff"'

+4fyf (3)+f2f (4) 2 0
14

Again we note that solutions may have simple poles. We
have no further knowledge of the character of its critical
points.

In general, the diA'erential equations are given by'

2k+1
D

aj,
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where
2k+1ak—= ak —), ao—= I, K=——f'"/6+f f',

3k

2)= —
—,
' D + ', f—+ ', f'D—'f,D= d/—dx.

The operator S is the recursion operator for the con-
served densities of the modified Korteweg-de Vries
equation. These equations imply that the asymptotic be-
havior off is .

li2k
I

2k + 1 (2k+1)ik+
48k

in powers of x ' k+ "t", the strin coupling constant.
Note that the relative sign of the f and xf terms al-
ternates.

Before comparing this asymptotic behavior to the re-
sults of Refs. 2-4, it is important to keep in mind that
the relevant function is f =g. The—asymptotic behavior
of interest is therefore

1/k I
2k + ~ —(2k + ] )/k+

24k

For the simplest case (k = I ), g satisfies
&2

g — =4g 4xg .
2g

This equation is integrable in terms of known transcen-
dents. ' The equation satisfied by g in the case of k=2
1s

t4 9 I2 «3 «26g3Ã5gg«+
16g 4g 4g

(3) (4)—+ —6gx =0
g 2

which appears to be quite different from the fourth-order
equations given in Refs. 2 and 8. Perhaps a deeper
analysis of the underlying infinite-order equation will

lead to a clear relation (or the lack of one) between the
two sets of theories. In particular, this equation should
be compared to Painleve I for the Hermitian models.
While the function f exhibits simple poles, the function g
naturally has double poles, which is also the case for the
scaling functions found in Refs. 2-4. Another similarity
between these theories is the occurrence of additional pa-
rameters that are not evident in the perturbative expan-
sion. We find that there are k such parameters, even

though a priori there are 2k initial conditions that need
to be specified for the diAerential equations. k of them
are determined by matching the nonperturbative solution

to the planar approximation. It is interesting that there
is one additional nonperturbative parameter in the uni-

tary models, as compared to the Hermitian models.
Since the general planar theory has not been solved be-
fore, we give below the solution of the general k =4 mod-

el in the planar limit.
It is, we believe, of some interest to understand what

conformal field theories are obtained from these
unitary-matrix models. We think it is significant that
the specific heat in these unitary-matrix models is posi-
tive definite. Quite obviously, this does not guarantee
that the coefficients of a perturbative expansion of g(t)
in powers of the string constant will have any positivity
properties.

Correlation functions in these models may be ob-
tained' as simply as in the Hermitian-matrix models.
The properties of the correlations will be helpful in iden-

tifying the conformal field theories corresponding to
these models. The relevant planar correlations may be
derived easily from the formulas we give below.

We end this Letter by giving the general solution of
the k=4 potential at arbitrary values of the coupling
constants. It is then easy to see how the critical ex-
ponents change as these parameters are tuned. We shall
be brief here because the essential analysis is contained
in Refs. 5 and 6. The planar approximation amounts to
approximating the functional integral by a saddle point.
The basic idea' is to derive the distribution of the eigen-
values of the "dominant" unitary matrices, which is dic-
tated by the form of U. In the large-N limit, the number
of eigenvalues is infinite and, since they are all con-
strained to lie on a compact set (the unit circle), we in-

troduce the density of eigenvalues p(a) =dy/da) 0,
where y is a continuous variable going from 0 to 1, which
corresponds to i/N for finite values of N. Then the
saddle-point equation for determining p is

2 ~
t ac a——sin(a)i, "(cosa) =P p(ig)cot

ac 2

with P denoting the principal part of the integral. (We
have changed conventions here to those of Ref. 6, to fa-
cilitate comparison. The eigenvalues are now taken to
run from [—z, z], so that at positive small A, the eigen-
values are close to 0 in the simplest model. In general,
one can pick the sign of the coupling so that this state-
ment is valid at weak coupling. ) a, may take any value

up to z, and is determined along with p by solving the
equation above. The solution is obtained exactly as in

Ref. 6. For

v(cos(a)) =—cos(a)+ cos (a)+ cos (a)+ cos (a)2 k] 2 k2 3 k3 4

2 3 4

we find that the density of eigenvalues is given by

p (a ) = (2/tr) )cos (a/2) [a —sin (a/2) ] ' [l —a (k i + k 2+ k i) + 3a (k 2/2+ k i) —Sa '(k i/2)

+ [k
~

—a(k2+ki)+ —', a ki]cos(a)+(k2 —akim)cos (a)+k3cos (a)},
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where a=sin (a,/2). a satisfies

1/2=(1+k)+kp+k3)a ——', (1+k(+2k2+3k3)a + —', (kp+3k3)a ——", k3a

The solution chosen is real, positive, and less than 1.
There is a critical value of X at which a= 1. Upon tun-

ing k;, the exponent that characterizes the vanishing of
the spectral density at criticality changes discontinuous-
ly, as expected exhibiting universal behavior.
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