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Measurement of Berry's Phase for Noncyclic Evolution
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Tracing the neutron spin on its passage through a magnetic field which rotates at various frequencies,
it was possible to observe geometrically induced phase shifts of a quantum-mechanical state even for in-

complete revolutions of this field. The experiments show that we can extract such purely geometric
eA'ects also from nonadiabatic evolutions.

PACS numbers: 03.65.Bz, 28.20.—v, 29.75.+x

The geometric eA'ect on the phase of the wave function
of an adiabatically changing quantum-mechanical sys-
tem was first described by Berry' for cyclic evolutions of
the Hamiltonian. Some more general approaches ex-
tended the applicability of this concept to homological
problems and gauge theories and described the connec-
tion to its classical analog, the Hannay angle. ' The first
experimental manifestation of this geometric phase was
found a few years after its theoretical formulation by ob-
serving the rotation of linearly polarized light on

transmission through a twisted optical fiber. " A similar
experiment with particle beams was realized by tracing
the neutron spin in adiabatically rotating magnetic
fields. In the meantime, geometric phase shifts were
also found by several other techniques such as, e.g. , nu-

clear magnetic resonance, laser interferometry, and

electron difI'raction. The topological eA'ect could also be
deduced by dropping the condition for an adiabatic
change of the system's parameter. Recently several au-
thors pointed out theoretically that besides the dynami-
cal phase shift there should also be an observable
geometric eA'ect for partial cycles and for open, noncyclic
evolutions in parameter space. '

In the present Letter the interaction of neutrons with

time-dependent rotating magnetic fields was used to
prove these new ideas experimentally. The behavior of
neutrons in magnetic fields is described by the Pauli
equation with the Hamiltonian H(t) = —pa" B(t),

where p is the magnetic moment of the neutron and o is

the Pauli spinor operator. It is well known that for the
case of a field B(l) =B[xcos(cot)+ysin(cot)] rotating in

the x-y plane with constant frequency co and field
strength 8 an analytical solution of the Pauli equation
can be derived by a transformation into a rotating coor-
dinate system, a concept used, e.g. , in NMR to solve the
Bloch equations. Following the notations of standard
textbooks' we will calculate both the exact solution and
the so-called adiabatic approximation.

For the above field configuration the Pauli equation
reads

ih ! e(t)&=H(t)! e(r)&= —pB
at i e (t)&

with the eigenvalues E~ 2= ~ pB =hcoL/2 (coL is the
Larmor frequency). Initially (i.e., at t =0) the associat-
ed eigenvectors

~
n(t)) (n=1,2) are oriented along the

+ x direction.
The Hamiltonian H(t) can be diagonalized by the

unitary transformation ! %'(t)) =U(t)!@(t)), with U(t)
=exp( —icota, /2), which is equivalent to the transfor-
mation into a reference frame rotating with angular fre-
quency co around the z axis. The matrix U(t) also de-
scribes the time evolution of the eigenvectors ! n(t))
=U(t)!n(0)). In the rotating frame the Pauli equation
takes the form

a
! e(t)) = U'(t)H(t)U(r) ihU'(t) U(—t) ! e(t)&= —,

' (hco o„—hcocr, )!e(t)). (2)

Since the eigenvectors are collinear with the x direction, the diagonal term of Eq. (2) is that one which is proportional
to cr, whereas the other —proportional to o —is nondiagonal. Therefore, with the usual notation U=aU/at, the rela-
tion (n(0)!U (t)U(t)! n(0)) =0 holds, which is essential for the adiabatic theorem and which also satisfies the parallel
transport law. To obtain the adiabatic approximation, the second term of Eq. (2) is neglected for coc» co, leading im-

mediately to

P(r) &,d
=U(r)exp( —icot rcr, /2) ! +(0)) . (3)
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The exact solution of Eq. (3) is

i +(r)) =U(r)exp[ —(i/2)a(r) a] i +(0)),
with a(r) =(coL,O,

—co) r. However, this solution has to be generalized still further,

i 0(r, to)) =U(r)exp( —(i/2) [coL r[cr„cos(coto)+ cr,, sin(toto)l —coro, l ) i ~(0)),

(4a)

(4b)

by taking into account that the axis of rotation

a(to) =(coL cos(toto), coL sin(coto), co—)l(coL2+ co 2) 't2

(5)

depends on the specific moment of time to each neutron
enters the rotating-field region.

In Eq. (4b) the phase B=coLr is the so-called dynami
ca/ phase. It depends on both the strength of the mag-
netic field and the interaction time. Whereas, it is the
matrix
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FIG. 1. Sketch of the experimental setup.

U(r) exp( icorcr, /—2) =exp( i ycr, /—2)

which characterizes the purely geometrical change of
the system, namely, the solid angle y =coi subtended by
the varying field direction, and which consequently
causes the geometric phase shift I = —y.

' '
The polarization of a neutron beam is defined as

the expectation value of the Pauli spin operator, P
=(+

i cr i +&/(0 i +&. However, it can be interpreted also
as an interference phenomenon of two orthogonal states.
Any change of the neutron polarization reAects phase
differences between these states and can be used there-
fore to observe additional geometric eff'ects on the
phase. '

Figure 1 shows a schematic sketch of the experimental
setup at the 250-kW TRIGA reactor, Vienna. A pair of
Heusler crystals is used to monochromatize (X =1.5 A.)
and to polarize the incident neutron beam (i P; i

=0.95)
as well as to analyze its final polarization state Pf. Adia-
batic spin turn devices allow us to set and independently

analyze the beam polarization consecutively along all
three orthogonal directions of space and hence to deter-
mine all elements of the (3&& 3) matrix P which describes
the change of the polarization vector along the neutron
trajectory between polarizer and analyzer, i.e., Pf =PP;

The rotating magnetic field is produced by two mutu-
ally orthogonal split pair coils of l =10 cm length along
the beam path which are driven with a relative phase
shift of 90'. At a frequency of v=26373 Hz the field
rotates just by an angle of 2z during the transmission
time r =37.9 ps of the neutrons through the coils. A
field amplitude of up to 40 6 has to be applied to assure
adiabaticity over the whole frequency range 4~ v~41
kHz, which corresponds to field rotation angles of 0.3z
~ y ~ 3.1z during the neutron passage.

A time-of-flight multichannel detector triggered
periodically by the signal fed to the coils allows us to
correlate the time to at which each neutron enters the
rotating-field region with the respective field direction.
Unless stated otherwise, the presented data are corrected
for the unavoidable time-of-flight broadening (AX/X
=1.5%) along the 1.2-m distance between the field coils
and the detector (effective thickness =3.5 mm).

To demonstrate the additional, purely geometric,
phase effect we analyze the change of the polarization
vector along the y and the i directions. From Eq. (4b)
the element P~r of the polarization transfer matrix P
(i.e., initial and analyzed polarization directions along y)
follows as

2a
P~,, (a, y, to) =cos ycos + sin y sina—

Q

2Q y . 2Q
& cos (2cot o+ y) sin — cos y sin

2 Q
2 2

Figure 2 shows the measured, uncorrected neutron inten-
sities versus time to for constant frequency v=14768 Hz
but different amplitudes (i.e., different Larmor frequen-
cies coL and diff'erent total phase angles a) of the rotat-
ing field. They are related to the matrix element Pyy via
I=(I+DP~i, )l„where the shim intensity for complete
depolarization (I,) and the residual depolarization (D)
of the empty apparatus can be measured separately. A
least-squares fit of the data according to Eq. (6) yields a
geometric phase shift y=1.12m, in full agreement with
the expected value. Figure 3 shows the measured inten-
sity profiles on a reduced time scale for a series of
diff'erent frequencies but with constant amplitude 8 =38
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F1G. 2. Time-resolved neutron intensity for different amplitudes of the magnetic field rotating with a frequency v=14768 Hz.

Both the incident polarization and the analyzer were aligned parallel to the y direction thus yielding the element P,, of the polariza-
tion transfer matrix P (see text).

6, corresponding to a Larmor frequency cuL =698 kHz. The adiabaticity condition ruL &) cu is well fulfilled in this case
and the total phase angle a=r(rut +co ) '~ =rot r is nearly independent of ru. Hence the observed behavior is charac-
terized by the third term of Eq. (6) and the phase shift of the intensity pattern with increasing frequency, which is indi-
cated by the dot-dashed line, is a direct measure of the geometric phase shift I = —y.

Three of these frequencies deserve special attention, namely, 4266, 22040, and 30606 Hz, which correspond to field
rotation angles of 0.323m, 1.67m, and 2.32m. They all have approximately the same relative oA'set + 0.3n from either
zero rotation angle or the full 2x cycle. However, the sign has no infiuence since P,,~ depends quadratically on the rota-
tion frequency and the final Hamiltonian H(r) is the same for all three frequencies. For constant field amplitude the
dynamical phase 8=rut. r is identical for all these cases. Therefore it is only the geometric property, namely, the angle y

0.6' 0-8 1.0
&./T

FIG. 3. P, , intensity vs reduced time ro/T (T v ) for diA'erent rotation frequencies at constant field amplitude 8=38 G. The
dot-dashed line indicates the linear increase of the geometric phase shift Av) with increasing frequency.
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FIG. 4. Polarization change along the i direction as a func-

tion of the applied field amplitude for diA'erent rotation fre-
quencies. It can be seen that the amplitude has to be about 40
G to ensure adiabaticity in the whole frequency range.

subtended by the rotating magnetic field, which differs
and consequently causes the unequal phase shifts. No-
tice that y4266=0. 323~ and y3p6p6=2. 32m differ by ap-
proximately 2z and hence can be distinguished here only
by tracing the phase shift via intermediate frequencies.

The polarization change along the z direction,

P„(a)=cos +, (y' —h')sin2a 1 2 2 . 2a (7)

is solely determined by the angle a. In the adiabatic lim-
it a becomes equal to the dynamical phase b and hence
no geometric efl'ect should be observable. This behavior
is verified in Fig. 4 which shows the element P„of the
polarization transfer matrix P as a function of the field
amplitude for different frequencies. But due to the
dependence of a on y (a =b + yz) the geometric phase
influences the polarization not only in the adiabatic but
also in the nonadiabatic regime and thus enables one to
differentiate easily between the above-mentioned fre-
quencies. In fact, this corresponds to a utilization of
nonadiabatic effects caused by the nondiagonal term
U (t)U(t) of Eq. (2), which also reflects the purely
geometric evolution of the system.

To summarize, we note that the use of time-dependent
rotating magnetic fields allowed us—in extension and
continuation of the first measurements of Berry's topo-
logical phase with polarized neutrons by Bitter and
Dubbers —to reveal geometric phase eAects also for
noncyclic evolutions. Varying the direction as well as the

frequency of the rotation, but keeping the field amplitude
constant, it was possible to reach the same final state in
parameter space via different paths. The observed phase
changes then solely reflected the geometrical evolution of
the system although the final state was different from the
initial one. It became evident that nonadiabatic effects
also depend merely on the geometric nature of the
change of parameters, a fact which was used to deter-
mine geometric phase differences of 2tr without ambigui-
ty.
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