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Critical Dynamics of a Pinned Elastic Medium in Two and Three Dimensions:
A Model for Charge-Density Waves
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(Received 13 October 1989)

We study numerically the dynamical equilibrium behavior for the uniformly driven, elastic model of
Fukuyama, Lee, and Rice for pinned charge-density waves, in the critical region close to the threshold
field for sliding, in two and three dimensions. We obtain a critical exponent for the mean velocity in

good agreement with recent experiments, and scaling for the velocity correlation function, from which
we extract a diverging correlation length. The correlation-length exponent v is found to be less than 2/d
(d is the dimension), suggesting unusual critical behavior for this model.

PACS numbers: 72. 15.Nj, 64.60.Ht, 71.45.Lr

The model of Fukuyama, Lee, and Rice' (FLR) for
the dynamics of sliding charge-density waves (CDW)
has been extensively studied not only for its applications
to real materials, but also as a paradigm for the behav-
ior of nonlinear many-effective-degree-of-freedom sys-
tems. The FLR model describes a classical, spatially ex-
tended system interacting with quenched random impuri-
ties and under the influence of a driving electric field; it
is equivalent to a system of coupled, overdamped non-
linear pendula. A very similar model can be used to de-
scribe the pinning of a votex lattice by disorder in a
type-II superconductor. The many-degree-of-freedom
nature of this model is particularly crucial in the descrip-
tion of the behavior close to the threshold electric field

(ET) for sliding; the depinning may be regarded as a dy-
namic critical phenomenon. It is described by exponents
which are different from one-dimensional systems such
as circle maps, which are often used in modeling CDW
dynamics.

Owing to the large computational effort required for
short-range interactions, the critical behavior has previ-
ously been studied only in mean-field theory with some
limited numerical work in one dimension; more exten-
sive numerical studies have been performed on the 1D
model with incommensurate, rather than random, pin-

ning. By utilizing parallel computational techniques on

a Thinking Machines Corp. CM-2 computer, we have
successfully equilibrated large systems (up to 2' sites)
close to threshold, and can thus study the critical behav-
ior without the usual recourse to finite-size scaling
methods. The good agreement we find between the cal-
culated velocity exponent in dimension d=3 and recent
experimental data on NbSe3 (Ref. 8) is an important
quantitative test of the model. Our 2D results should be
relevant for vortex motion in thin superconducting films,
provided phase-slip processes can be neglected.

The FLR model treats the CDW charge density p(r)
=pocos[Q r+p(r)] as a deformable elastic medium,
with the local position of the CDW described by a phase
p(r), and the dynamics given by the following equation

of motion:

yp(r) -KV p(r)++V;8(r —R;)sin[8;+p(r)]+E(t) .

(1)
Here we have assumed short-range interactions with im-

purities at random positions R;, so that 8; Q R; is a
random number, uniformly distributed in (0,2x). For
numerical simulation, we discretize the equation using a
standard finite-difference method on a cubic grid, obtain-
1ng

p;(r+br) -y;(r)+br {Ka"'y;(r)
+ VI sin[8;+p;(t)]+E(t)], (2)

where d ~p; is the discrete second difference between

neighboring lattice points. While other more refined
discretization methods are available, ours lends itself to a
simple physical interpretation as a model of elastically
coupled damped oscillators. For the critical behavior,
the details of the discretization are not expected to be
relevant. In the simulations V; was chosen randomly to
be zero or a constant V, with roughly half of the lattice
sites having nonzero pinning. We used values of V and
K such that both the characteristic length scale gn
= (V/K) 'i and the threshold field ET are of order uni-

ty. We used periodic boundary conditions on an N" cu-
bic system, with N 128 and 256 in two dimensions, and
N 16, 32, and 64 in three dimensions.

It is important to be able to separate the transient
response from the dynamical equilibrium behavior
reached at long times. For a sliding state, it is clear that
each grid variable must return to its initial value modulo
2z. Let the sequence of times tl, t2, . . . , t„be the re-
currence times for a particular grid point, henceforth
called the "central variable" and which acts as an inter-
nal clock. At each of these times we compare the global
solutions with their values at the previous "tick" t„—l of
the clock, by computing both Euclidean and max norms.
The solution is periodic when both these measures of dis-
tance become zero, and when the period T=t„—t„—[ be-
comes constant. The mean velocity U =(p) is identically
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(3)

C(r, ) =N g(j(r;+r, )j(r;))—t '-W'(f)c(i, /g(f)),
I

(4)
where 5-f~ measures the rms velocity fluctuations and

the scaling form is expected to be valid for both r, ())(p.
The angular brackets in Eq. (4) specify a time average;
while strictly unnecessary for an infinite system this im-

proves the statistics in finite-size lattices. We note that
g;C(r;) =0, so that C(r) is a function with a decaying
envelope and at least one change of sign. ' Our data are
consistent with a functional form for the scaling function

2'//T. With a uniform dc applied field, we find always

that the dynamical solutions above threshold are periodic
in time, as inferred already in one dimension. Conse-

quently, there is no broadband noise (BBN) for uniform

driving, and narrow band noise (NBN) occurs only as a
finite-size eff'ect, as found by perturbation theory to all

orders in 1/E. Our method is easily adaptable to search
for cycles of longer periods (by comparing the config-
urations at times t„,t„ i) such as occur when the driving
field also has an ac component. These periodicities
would also be revealed by Fourier analysis, but this is

impracticable for an accurate determination of the

periods, requiring very long integration times.
Close to the threshold field, we find that the mean ve-

locity satisfies

v =N 4+(j(r;))-f&,
I

where the reduced field is f=(E —ET)/ET. The co-
operative nature of the behavior is made explicit by
defining a correlation length g-f ' from the equal-
time correlation function for the velocities:

of
c(x) =x "c'(x), (5)

where c' is an oscillatory function of its argument, '' and
the power-law prefactor is expected in general. The
on-site correlation function C(0) =ho-f ' also van-

ishes with a power-law exponent at threshold, which sug-
gests that the critical regime (defined by Ao/t ) 1)
should be over a field range —1 in reduced field. Note
that consistency of the above scaling relations requires
that yo = y —

2 x v, a relation obtained by matching
C(0) to 5 c(gn/g) at the short scale r-go.

In Fig. 1 we show the results obtained in three dimen-

sions for single runs with N=16 and N=64 and three
configurations at N=32. Because there is a divergent
length scale g at threshold, finite-size effects will modify
the critical behavior, leading to a crossover to (= —,

'

when g-N. The finite-size effects are clearly visible at
low reduced fields for N=16 and less so for N=32, but
computational times were too long for this regime to be
reached for N 64. At higher fields than shown here, we

find systematic deviations away from power-law scaling
consistent with the high-field perturbation theory. ' The
critical region can also be estimated by comparing the
on-site rms fluctuations of the velocity Ao with the mean

velocity t; we find that ho) v for f(3. This, and the
analysis of the correlation length g given below, gives us

confidence that the crossovers at low and high velocities
are well controlled. We fit the critical exponent for the
larger sizes over a range of velocities from 10 ( U & 1,
obtaining (=1.16+oo2 in three dimensions; the uncer-
tainty in the exponent is determined principally by the
accuracy in determining ET. A recent experimental
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FIG. 1. Plot of the mean velocity vs the reduced field for
five samples of three diAerent sizes in three dimensions.
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FIG. 2. Velocity-velocity correlation function r C(r)/C(0)
for a two-dimensional system of size 128 . The symbols are la-
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1 and also show clear evidence of finite-size eflects in the
correlation length ( (Fig. 4), which gives us further
confidence that the eA'ects of finite size are under control.

We note that within very close bounds we find yo
This relation is a simple consequence of the jerky

motion of the CDW close to threshold, where the local

velocity is —I for short periods separated by times —I/t.

when the local velocity makes a negligible contribution
to the average. Thus all moments of the local velocity
average will scale as mean velocity: ([N P;p(r;)]")
=U. The existence of a finite length scale at ET can also
be inferred directly from the mean velocity as a function
of time in the critical regime.

Although for an infinite system the mean velocity will

be time independent, statistical fluctuations for finite 1V

lead to a periodic component at the "washboard, " or
NBN, frequency 2n/T=v. Close to threshold, we find

that the measured spatially averaged velocity acquires
considerable harmonic content; in a finite sample of
volume V, the amplitude of the coherent NBN is expect-
ed to be given by fluctuations in the velocity of a corre-
lated volume, and should be of order A[( /V]'~ -f"'.
Since yi ( (, the NBN will dominate the dc velocity
close to threshold. This oA'ers a possibility for a further
experimental check of the scaling behavior. Because our
simulations have been performed only for large sizes, it
was not possible to check unambiguously the square-root
volume dependence, although this is well established by
the perturbation theory. In Fig. 4, we show the mea-

sured NBN amplitude (integrated over all harmonics)
for a 32 sample; there are large fluctuations (as expect-
ed for a finite-size effect) but the data are consistent
with f".

While there is some considerable uncertainty as to the
extraction of f from our data, we believe that the results
for v are unambiguously inconsistent with the relation
v) 2/d, believed to be a general result for quenched dis-

order. ' This result was derived from contemplation of a
finite-size scaling procedure, whereas we have extracted

g directly from the correlation function. Thus it is possi-
ble that there are two (or more) diverging lengths in-

volved in the approach to threshold, with g determining
the growth of local velocity correlations (in particular,
the spatial oscillations of the correlation function). ' We
also remark that an earlier experimental analysis of the
BBN near threshold was interpreted by means of a
threshold-field fluctuation model and indicated a cor-
relation-length exponent of v=(/3, ' consistent with

our value. Ho~ever, since no BBN is found in the uni-

formly driven FLR model, the analysis of BBN experi-
ments depends on assumptions as to its origin, which are
di%cult to check.

In conclusion, we have determined critical exponents
and scaling of the correlation function for the FLR mod-
el in two and three dimensions. The velocity exponent in

d=3 is in good agreement with experimental results, and
the observation of a nontrivial exponent for the dynamics
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adds further to the already considerable evidence that
the many-degree-of-freedom natu'~ of CDW's is a cen-
tral feature of their dynamics.
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