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Nonperturbative Two-Dimensional Quantum Gravity
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We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double-
scaling limit of the random-matrix model ~ We derive an exact differential equation for the partition
function of two-dimensional gravity coupled to conformal matter as a function of the string coupling
constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and
consequences. We also construct and discuss the correlation functions of an infinite set of local operators
for spherical topology.

PACS numbers: 11.17.+y, 04.60.+n

The conventional approach to two-dimensional gravity
and to string theory' is perturbative with respect to fluc-
tuations of the topology. One sums over two-dimen-
sional geometries by first performing the functional in-

tegral for fixed topology (fixed genus equal to the num-

ber of handles) and then summing over genus. However,
this sum is very badly behaved. The higher terms grow
as factorials of the genus, and the positivity of these
terms renders the series non-Borel summable. It would

appear that we are faced with a genuine nonperturbative
phenomenon, like quark confinement, made worse by the
absence of a nonperturbative definition of the theory.
Such a framework (for example, a useful formulation of
second-quantized string theory) should be capable of
reproducing the topological series as an asymptotic ex-
pansion, valid in the perturbative domain; but it should
also provide a physical picture and a mathematical
framework valid for strong coupling. From what we al-
ready know about gravity and strings, we expect dramat-
ic phenomena in this region.

Recently, a completely dift'erent approach to gravity
and string theories has been pursued. The geometry of
the world sheet of the string (or two-dimensional space
in the case of pure gravity) is approximated by a dense

Feynman graph of the same topology, in the limit ~here
the number of vertices becomes infinite. The topology is

selected by means of the 1/N expansion of a SU~-
invariant Hermitian-matrix model, while an infinite

number of vertices can be produced by adjusting the cou-
pling constant to equal a critical value at which the loop
expansion of the matrix model begins to diverge. The
sum over all Feynman graphs of given genus and given
number of vertices can be regarded as a discrete version
of the functional integral over metric tensors. Remark-
ably, in many cases these discrete models can be handled
with greater ease than their continuous analogs. Much
work has been done for dimensions less than one and
spherical topology, with results that are in complete
agreement with those of conformal field theory. '
[There have also been some interesting observations
concerning higher-genus surfaces in the supersymmetric
case (d= —2), which is particularly simple since the
random matrix can be expressed in terms of a free field

(i.e., a Gaussian matrix). ]
The matrix approach has numerous advantages. It al-

lows for efficient computer simulations and it makes pos-
sible powerful combinatorial methods that often enable
one to explicitly solve the discrete models. This is a
great advantage over continuum methods, which rarely
allow for exact solution of model with an ultraviolet
cutoff. Finally, it makes sense beyond the 1/N expan-
sion. It is the last point that we shall develop here.

We regard the partition function of the random
Hermitian-matrix model,

Z~(P) =J"d@exp[ —PTrU(C&)],

as the discrete version of the sum over surfaces S, of
genus G and area A. The logarithm of the original parti-
tion function,

1nZ~ (p) = regular terms+ g N ' — A ' Fg [Ul,

(2)

generates connected graphs. The irrelevant regular
terms arise when the matrix field @ is rescaled to renor-
malize to @ /2 the quadratic term in pU(4). The role
of the area of the graph is played by the number of loops
of the dual graph. The factor A ' compensates for the
overcounting of loops in the evaluation of the vacuum

energy (this factor would disappear in the calculation of
correlation functions). The factor Fg[U] is given by the
sum of the products of the vertex weights corresponding
to the cubic and higher-order terms in U(&), divided by
the order of the symmetry group of the graph with one
marked loop. (The factor A ' takes care of the 2 ways
to mark the loop. ) This sum runs over all graphs with
the same number of loops and the same genus. The con-
tinuum limit is achieved by carefully adjusting p so that
the loop expansion diverges.

Recently Kazakov made a remarkable observation.
He noted that, by adjusting the parameters Uk, one can
reproduce the critical behavior of matter coupled to
gravity; i.e. , a carefully constructed F+[U] can yield the
partition function of conformally invariant matter fields
in a gravitational background. (In order to obtain the

1990 The American Physical Society 127



VOLUME 64, NUMBER 2 PHYSICAL REVIEW LETTERS 8 JANUARY 1990

Let us now brieAy describe the technique and the basic
results of our approach to quantum gravity (full details
are in Ref. 10). The first step is standard —we eliminate
the angular matrices from (I), obtaining an integral over
the eigenvalues p, of the matrix @,

multicritical points one must have negative weights for
some triangulations. However, as we shall see, physical
positivity can be preserved. ) Kazakov has explicitly
verified this conjecture for spherical topology. As we

shall see below, the universality of the critical behavior
holds to all orders of the 1/N expansion, but the nonper-
turbative terms introduce k —

1 extra parameters. (See
also the interesting paper by Douglas and Shenker,
where many of our results were independently obtained.
They were the first to realize the significance of the
higher-derivative terms for k & 2, which we inadvertent-

ly doped in an earlier version of this Letter. )
To be specific, we shall take the double limit: N

p/N 1, and adjust k parameters in the potential U(@),
after which the following scaling law will hold:

InZtv(P) =regular terms —F(t),

/4 1V

Ziv(P) ee Jr Qdy;AivexP —g PU(P;)
i 1 i=1

(s)
H[~i(j~iV

This is the partition function of a one-dimensional
Coulomb gas of % equal charges in an external potential
U, first introduced by Dyson. " Because of remarkable
properties of one-dimensional Coulomb forces it can be
exactly computed. The point is that the Coulomb factor
h~ in the statistical weight coincides with the Vander-
monde determinant gatv =detllp; II, which enables us to
apply the powerful theory of orthogonal polynomials. '

One introduces a space of functions, F(P), with scalar
product (A

i
i8)—=fdpexp[ pU(p—)]A(p)B(p). The

basis vectors in this space, i n), correspond to orthogonal
polynomials with weight exp[ —PU(P)]. Because of the
orthogonality of the polynomials, the variable p is repre-
sented in this basis by a tridiagonal operator, tt im)
= im+ I)+R im —1)+S im). (We choose to nor-
malize to unity the coefficient of the highest term in i n),
so that (n i n) =R„(n —1

i
n —1) instead of unity, and p is

not manifestly Hermitean. This simplifies the intermedi-
ate equations. ) These parameters R,S govern the re-
cursion relation for the orthogonal polynomials and can
be used to extract the physics from the model. Thus the
partition function can be evaluated, for large N, as a
product of R„,

1V —
1 X

Zw(P) ~ Q R„' "—exp P JI dx(X —x)lnR(x), (6)
n ] 0

where we introduce the continuous variables x=n/p,
X=N/p, and R„R(x). R„and S„ in turn satisfy the
nonlinear recursion relations' '

(3)
r
—

(P N)P
—I/(2k+I)

We shall prove that the specific heat, f(t) =F(t), obeys
the following differential equation, which we propose as
the basis of a nonperturbative definition of two-dimen-
sional quantum gravity:

K[f(t),V, ]" 1,
(2k —1)!!

, l(n
—o'

I ~ —o'& =(n —o'
I
U'(i ) I n&, o'=0, I

which we shall use to calculate them. To this end it is

very convenient to interpret p as an operator in the basis
of eigenstates in& of an angular momentum operator l
[i.e., l in) =(n/p) in)], conjugate to the angular coordi-
nate 8; p=e' +e ' R(l)+S(l). It is then easy to see
that (7) can be rewritten as

(7)

(4)
K[f(r),V, ] =——

—,
'

V, +f(t)+V, 'f(r)V, .

The operator K was introduced by Gelfand and Dikii in

their study of higher-order Korteweg-de Vries equa-
tions. The nonlocal terms involving V,

' in this expres-
sion cancel. In fact, K' 1 yields the higher Korteweg-de
Vries equations, K 1 =f, K 1 = —,

' (3f f), etc. —
Equation (4) is universal, depending only on the single

parameter k. The simplest case, k =2, corresponding to
pure gravity, yields the Painleve equation, t =f~ —,' f, —

while the case of general k, which according to Kazakov
corresponds to gravity coupled to conformal matter with

central charge given by C=1 —6/k(k+1), yields a

(2k —2) th-order di(ferential equation. The above-

mentioned violation of perturbative universality corre-
sponds to the ambiguity in the Cauchy data for this ordi-
nary differential equation. We find that half of the free
parameters are fixed by requiring that the asymptotic be-
havior at infinity correspond to spherical topology, i.e.,
f r '/". The remaining k —

1 free parameters violate
perturbative universality. We do not know of any gen-
eral argument to fix them.

x6 i
= e' U' e' +e ' R x —— +S x ——lae i le —lS i d

2z P do p de
. 1, a=0, 1. (8)

Let us first consider the limit P —N ~, but P/N ) 1, which corresponds to spherical topology. In that case we

drop the derivative terms in (8) and these equations can be interpreted as giving the extrema of

Q(R, S)—:—xS+f~ U z+ —+St: dz R
2%i z
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The critical behavior can be analyzed using the Landau
theory of phase transitions. The generic singularity
of the partition function is rational, InZ~(p) —regular
terms+ p (X—X„;,;,,~)

'+ /, in perfect agreement with

the continuum result, ' provided C= I —6(p —q) /pq.
From now on we restrict ourselves to the case of even

potentials, where 5=0. Equation (8) is simpler in terms
of the following function W(R):

W(R) =ft U' z+-
2Ãl Z

(10)"' dt
U(y) = W(t(1 —t)y') .

t

Indeed, (8) reduces to x=W(R). The possible types of
critical behavior can be deduced directly from this equa-
tion, after which one may reconstruct the potential U(p)
that produces this behavior, and then reinterpret the re-
sults from the point of view of the Dyson gas or in terms
of random graphs. The scaling laws arise when

I —W(R) and k —I of its derivatives vanish at, say,
R=l; in other words, W=Wk(R) =I —(I R) . (For-
even k this yields a potential that is unbounded from

below, however, this does not affect the universal critical
behavior, as we can cut oA' the potential for large p and

the net effect will be exponentially small terms that do
not survive the scaling limit. ' ) The partition function in

this limit behaves as

pT
Zw(P) ee exp —„dt(T t—)f(t)

where

T —
p N/p I/(2k+ 1 ) f(1)= (I R)p2/(2k+ ) )

Let us now return to the general scaling limit where we
will sum the complete topological expansion using (4).
We first note that the integral is dominated, for large p,
by the region of small 8—I/p. The following trick al-
lows us to pick out the dominant terms. Define the
singular potential U, ((t ) =8 ( —,', —

2
—v) (2 —p) '+ '/

+(p —p). One may easily check that this potential
gives W=W, (R) =(I —R) "[I+o(1—R)], in the sense
of analytic continuation from negative v. For this po-
tential (8) reduces to the form x = —2v8( —,', —,

' —v)
x(x ~H' ' ~x), where H is the Schrodinger operator
H:8+ I —R—(I). Note that here I (8) plays the role of
coordinate (momenta). This function, especially in the
limit of integer v of interest to us, was studied by Gel-
fand and Dikii. Using their results we obtain in the
scaling limit the following closed expression [u—=R(x)
—R(x'), &=—(I/P)d/dx']:

——V +u+ —uV 1
1

2
V

x=J „,W R(x)+ t

2(1 t) '/'— 21 t—
x ~x

=W(R)+ [W"(R)R"+ —,
' W''(R)R' ]+ IW R +W [ ', (R") +2R—'R ]j

60P

2 ~(k)R (2k —2) +. . .
p2k —

2(2k 1)I'I2k

Equation (12) is the basic dynamical equation of our
theory. It is not too difficult, using (12) for W(R)
=I —(I —R), to show that the expansion terminates
and that f(t) obeys Eq. (4).

We may actually consider a more general potential,
which corresponds to small perturbations (both relevant
and irrelevant; since we can construct the theory explicit-
ly before removing the cutoff we can construct irrelevant
operators) of the kth multicritical point,

W(R) = Wk(R) —gP;(W/, (R) —
W(, y)(R))/PN . (13)

l

The additional terms, when transformed to U by (10),
represent the perturbation of the kth multicritical pont
by the set of operators 0; =(I/N)Tr[U/ (&) —Ui „(@)],
with scaling dimensions d; =I;/k (since as I —Wk scales
as 1

—x and hence has dimension 1 for the kth multicrit-
ical model). These operators are the random-matrix
counterparts of the Zarnolodchikov multiscaling pertur-
bations in conformal field theory. The coefficients p, in

front of the operators have the meaning of chemical
potentials or sources. The derivatives 8"(InZ~)/
Bp] . . Bp„can be interpreted as connected correlation
functions of these operators.

In order to determine the full genus dependence of the

(12)

(14)

129

correlation functions it is necessary to solve a set of
linear differential equations whose coefficients depend on

f(t) and its derivatives. However, on the sphere the
problem is purely algebraic and can be completely solved

using the Lagrange formula for series inversion. The re-
sult is amazingly simple (negative powers of derivatives
stand for integrals),

(0, 0„)=N ' " k '(d/dy)" y

y=+ —I, Z= —+ g d;.1

jV
'

k
A basis of orthogonal operators can be constructed (the
two-point function given above defines a positive definite
metric). (These results will be described at length in

Ref. 10.) It would be extremely interesting to calculate
similar correlation functions in the conventional path-
integral approach and to compare with our results.

Let us, however, proceed with the main theme of this

paper: The study of nonperturbative two-dimensional
quantum gravity as described by Eq. (4). For k=2 this
is the classical Painleve I equation. Much is known
about the solutions of the Painleve equations; in particu-
lar, they have a one-parameter family of solutions which
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—gt, r"'exp 4k g(A) I+ I/2kI
2k+1 . (15)

[It is easy to prove, using (4), that the terms in the per-
turbative, large-t, expansion behave, in order n, as (2n)!
as expected. For details, see Ref. 10.] The g; are the
roots of the Gegenbauer polynomial, C21, -1(g), with pos-
itive real part, of which there are precisely k —

1 in num-

ber. The k —
1 roots with negative real part give growing

exponentials that must be killed to give the correct
large-t behavior. The coefficients of the exponentially
decreasing terms, the X;, are the k —

1 free parameters
that cannot be seen in perturbation theory.

This exponential correction can be interpreted as a
kind of gravitational instanton eA'ect. The peculiar
power of t that appears in the exponential is precisely of
order p —N, which is the square root of the inverse of the
topological (string) coupling constant. What kind of
string field theory could yield this kind of instanton?

As we go deeper into the region of strong coupling (of
small t), these exponential corrections grow and start in-

teracting via the nonlinearities of the equation. Eventu-
ally this must lead to collapse, as we can see by the fol-
lowing argument. The interpretation of the partition
function (2) as a sum over random surfaces requires, at
the very least, that all derivatives of ]nZ&(P) with
respect to 1/p be positive. This means that odd (even)
derivatives of f(t) must be positive (negative). Consider
the simplest case of k=2. We have verified that this
property holds, order by order in the perturbative expan-
sion; however, the basic equation does not guarantee that
this will persist to strong coupling. Indeed, from the
Painleve equation we deduce, assuming the above posi-
tivity condition, that the solution of (4) that is positive
for r ) 0 must satisfy 1/2 Jt &f & (3t) 'i, which clearly
cannot be satisfied for r & I/243. The actual value of
g,t„„g at which the collapse takes place depends on the
free parameter A, . Note that this violation of positivity
does not represent a singularity of the Dyson gas; only
our assumptions (perhaps false) about the interpretation
of quantum gravity as a sum over surfaces are violated.
The issue of the possible existence of a strong-coupling
phase of quantum gravity is of great importance, espe-
cially in string theory, where g„„„g is a dynamical pa-
rameter. [We shall analyze (4) and this issue at length

are finite for positive t and approach Jt at ~. This is

the boundary condition needed to reproduce the correct
leading behavior in the perturbative limit. [Recall that
g,&„,s =(1/t) +' is the string coupling constant. ) The
remaining free parameter X can be regarded as the
coefficient in front of the exponential correction to the
asymptotic expansion. In the case of general k, we can
derive, using (12), that

f(r )—r
"—[(k —1)/12k ] r

in a longer version of this Letter. '0]

Can we pass beyond the singularity at C=1 to dimen-
sion greater than one? This is not trivial. As C 1

(and k —~) our potential becomes infinitely steep; the
order of the equation becomes infinite as does the num-
ber of apparently free parameters. The region 1 & C
& 25 would correspond to imaginary 2k+1 which does
not have any meaning as far as we can see. The region
C & 25 corresponds to negative 2k + 1 which causes oth-
er problems. Thus, the nonperturbative solution of string
theory in physical dimensions remains to be found.
However, we believe that it is of great value to study in

detail the nonperturbative properties of the theory for
C & 1 as this will have much to teach us about future
formulations of string theories.
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)Vote added. —After completion of this paper we re-
ceived a report by E. Brezin and V. Kazakov (unpub-
lished) in which some of our results were independently
derived, as well as a report by M. Staudacher (unpub-
lished) which questions the identification of the kth mul-
ticritical models with the unitary minimal series.
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