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Nearly Incompressible Hydrodynamics and Heat Conduction
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By means of an asymptotic analysis, two distinct approaches to incompressibility are found for a low-
Mach-number ideal fluid, distinguished according to the relative magnitudes of temperature, density,
and pressure fluctuations. For heat-conduction-dominated fluids, temperature and density fluctuations
are predicted to be anticorrelated, and the classical passive scalar equation for temperature is recovered,
whereas a generalized "pseudosound" relationship for the fluctuations is found for heat-conduction-
modified fluids, together with a modified thermal equation. The full set of nearly incompressible dynam-
ical equations is described.

PACS numbers: 47.40.Dc, 47.25.Qv

The theory of fluid' and magnetofluid turbulence
remains an active area of fundamental research and
provides a mathematical basis for many physical applica-
tions of current interest. Of the better developed tur-
bulence theoretic formulations, most are restricted to the
case of incompressible fluids, with a constant density and
a solenoidal flow velocity. However, observational evi-
dence in laboratory systems and in astrophysical and
space plasmas points to the potential importance of
certain compressibility effects, especially density fluctua-
tions, even when incompressibility appears to be an oth-
erwise good approximation. ' " Accordingly, there has
been considerable interest in exploring the relationship
between density fluctuations and incompressible tur-
bulence ' ' recently, as well as the more general rela-
tionship between compressible and incompressible fluid

models. "' We address further these crucial issues in

this Letter, including for the first time, as far as we are
aware, consideration of the full ideal-gas equation of
state and the effects of heat conduction. Our conclusions
clarify previous results based on more restrictive assump-
tions, ' ' ' extend the applicability of descriptions based
on incompressible turbulence, and suggest novel experi-
mentally observable features of certain flows having
nearly constant density.

In the following, we demonstrate that the equation of
heat transfer typically used in studies of incompressible
turbulence' should be interpreted correctly as an equa-
tion of nearly incompressible hydrodynamics and not of
incompressible hydrodynamics. This result is a direct
consequence of applying perturbative techniques de-
veloped recently by Zank and Matthaeus' to the special
case of thermally conducting hydrodynamics. Such per-
turbative techniques were developed to clarify the rela-
tionship between low-Mach-number compressible and in-

compressible fluids in which the limiting solution of the
compressible equations satisfies a completely diflerent
nonlinear partial diff'erential equation (PDE) as the
Mach number tends to zero. ' In summary, our ap-
proach is to derive a modified system of fluid equations

which retain the effects of compressibility weakly (such
as density fluctuations) yet contain the incompressible-
fluid solutions as the leading-order, low-Mach-number
solutions. Such an approach was initiated, for ideal po-
lytropic compressible flows, by Klainerman and Maj-
da, '3' ' who postulated a set of modified hydrodynamic
equations and proved rigorously that their equations con-
verge to the incompressible hydrodynamic equations with
decreasing Mach number. For obvious reasons, we call
such modified equations "nearly incompressible. "'

To illustrate the power and generality of our approach,
we investigate in detail the hydrodynamic equations with
heat conduction and show that there exist two distinct
sets of nearly incompressible equations, both having the
incompressible hydrodynamic equations as their limiting
case. The most remarkable aspect of our analysis is that
the well-known equation of heat transfer for an in-
compressible fluid' arises quite naturally as an equation
of nearly incompressible hydrodynamics for situations in
which thermal processes dominate the fluid dynamics.
Besides clarifying the standard rather unsatisfactory
derivation of the "passive scalar" equation, ' our ap-
proach also illustrates that the incompressible heat-
transfer equation" is valid only when temperature and
density fluctuations are significantly more dominant than
the pressure fluctuations. In this case, use of the other
nearly incompressible equations reveals that the density
and temperature fluctuations bp, bT are anticorrelated,
in the sense that bptx —BT—a result of considerable
value, both experimentally and theoretically, for heat-
conduction-dominated turbulence. Alternatively, for the
case when no one of the pressure, density, or temperature
fluctuations dominates the others, we derive a diA'erent

thermal-transfer equation modified by acoustic eA'ects.

The fluctuating quantities are related via bT~Bp —bp
which, as we show below, reveals immediately that if the
pressure and temperature fluctuations are correlated,
then bp =c, bp (c, the sound speed). This is the basis of
the pseudosound approximation used to relate density
fluctuations to incompressible pressure fluctua-
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By using the normalizations xlL, uot/L, p/po, and

plpo, with L the Reynolds-number length scale and p the
pressure, the normalized continuity and momentum
equations become

B,p+V pu=0,

pt1, u+pu Vu= —e Vp, (2)

where, for highly subsonic flows, e =y uo/c, =yM, «1,
with y the ratio of the specific heats. For the ideal gas,

p ce pT. Kreiss, ' in studying symmetric hyperbolic
PDE's with widely separated time scales, showed that if
the solution is to vary on the slow time scale alone, then
it is necessary that several time derivatives (and, in par-
ticular, at time t =0) of the solution be bounded of order
1. This procedure suppresses fast-scale variations such
as acoustic waves and allows the solution and its deriva-
tives to be estimated independently of e. The limit e 0
can then be considered and asymptotic expansions de-
rived. Evidently, for B,u to be bounded independently of
e', it is necessary to choose the normalized pressure as

p =1+e p ~. It can further be shown that 8«u is bound-

ed if and only if V u =0. Finally, from the energy equa-
tion, it can be shown that the density p must be constant.
Thus, application of Kreiss's principle ' yields the equa-
tions of incompressible hydrodynamics directly as con-
straints on the subsonic compressible hydrodynamic
equations which eliminate all solutions which vary on

fast time scales. This gives mathematical expression to
the physically intuitive arguments commonly advanced
to justify the validity of the incompressible hydrodynam-
ic equations. ' We denote by u and p the solutions of
(1) and (2) which vary on slow time scales only, i.e. ,

solutions of the incompressible hydrodynamic equations

B,u +u" Vu"= —Vp", V u"=0. (3)

By employing appropriate thermodynamic identities,
the equation of heat transfer can be expressed in two
forms:

p(B, T+u VT) —(B,p+u Vp) =Pr 'V'T,

p(8, T+u V T) —ypv. u = yPr 'V 'T,
where the normalization poCr T/po has been introduced,
together with the Prandtl number Pr [C~ v the specific-
heat capacity at constant pressure (volume), y=C~/
C~]. ' The standard reasoning employed in deri~ing the
"passive scalar" thermal-transport equation from (4)
and (5) is not particularly satisfactory or enlightening,
and neither is the subsequent interpretation and just-
ification of the physical content. '

Let us consider solutions which are weakly perturbed
about the slow-time-scale solutions, i.e., u =u +au],
p=l+e (p +p*), so that the fast-time-scale modes

vary at worst only as O(e '). Some care should be ex-
ercised in choosing the scaling for the density and tem-

perature fluctuations. Consideration of either the ideal-
gas law or the "principle of least degeneracy" reveals
that either of the choices p=1+ep], T=T0+eT[ or
p=1+e p], T=T0+e T1 is entirely consistent. The
first choice corresponds to a fluid in which heat conduc-
tion dominates the dynamics, and the second to a heat-
conduction-modified fluid. For highly subsonic flows,
the convective time scale and the "sound crossing" time
scale are widely separated except for very long wave-

lengths. Thus, to obtain a uniformly valid expansion, we
introduce the multiple scales r=t, r'=e 't (slow and
fast time scales) and rt =x, g =ex (short and long wave-

length scales) and use either of the Ansatze above.
To illustrate the general procedure, we consider (3)

and (4) for the heat-conduction-dominated case. To the
lowest order in the nearly incompressible heat-con-
duction-dominated expansion of the compressible fluid

equations, we can neglect the contributions of the acous-
tic modes. Thus, in the absence of p*, we obtain, to the
first three orders

STD
+u V„T = V„T [O(e)],ar " Pr

u V~Ti+ui V„Ti+ V„Ti —j,p
(6)

B, T~+u .VT~ -Pr 'V'T~,

which, of course, is nothing more than the well-known

passive scalar equation, although derived here in a com-
pletely self-consistent and clear fashion. [Note that even

had we retained p*, we would still obtain (7) at this or-
der. ] It should be recognized that our mathematical ar-
guments are in complete accord with the usual intuitive
arguments advanced to justify (7). However, our
analysis can also be applied to the alternate form of the
thermal-transfer equation (5). In an exactly analogous
way, we can obtain another thermal-transfer equation
valid in a nearly incompressible fluid,

8, T[+u VT]+yV. u] =ypr 'V T1. (8)

Thus, for (7) and (8) to be compatible we require that
the velocity fluctuations u] satisfy the nonsolenoidal
equation

V u~ =(yPr) '(y —1)V'T) .

—u V„p =2Pr 'V„V~T~ [O(e )],
from which it can be seen that the temperature fluctua-
tion T~, like the density, is a function of the slow time
scale alone. On combining Eqs. (6), neglecting higher-
order expressions, and rewriting in terms of the original
variables, we obtain the equation of heat transfer for
nearly incompressible hydrodynamics,
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The final nearly incompressible equations come from the
continuity and momentum equations,

8 p~+u &p~+& u~ =0,
8,ui+u .Vul+ul. Vu —pivp =0.

(io)

Equations (7)-(11) represent a new system of fluid

equations, nearly incompressible heat-conduction-
dominated hydrodynamics, and we emphasize that these
equations are not merely of academic interest. They pro-
vide, first of all, a self-consistent set of equations, simpler
than (1), (2), and (4), which allows us to study, both nu-

merically and analytically, compressible effects in low-
Mach-number fluids in terms of the core incompress-
ible-fluid equations. Second, simple manipulation of (7),
(9), and (10) yields at once the relation

ypl = -(y- »Tl, (i2)

It can be shown that on fast time and short wavelength
scales, p* satisfies an acoustic wave equation and may
therefore be identified as the acoustic contribution to the
total pressure. Furthermore, (14) reveals that the
incompressible-fluid fluctuations act as a source of
acoustic waves. One can further show that the in-
compressible turbulence drives low-frequency, long-
wavelength modes which, had viscosity been included in

(2), are damped viscously and thermally. Thus energy,
besides cascading down from large eddies to small in the
incompressible fluid, is also transferred from eddies to
damped long-wavelength acoustic modes. The model is
closed by the modified momentum and continuity equa-
tions,

tigul +U ' Vul+U ' Vu = e '
Vp

ti pi+u Vpl+e 'V ui =0.
(is)

(16)

indicating that the two fluctuations are anticorrelated.
As noted above, this result contrasts strongly with the
pseudosound relation.

The implications of our analysis are rather diA'erent

for the case of heat-conduction-modified hydrodynamics
since, unlike the previous case, acoustic modifications are
present in the nearly incompressible equations. This is
reflected in both the thermal-transport equation and the
momentum equation. Indeed, the two forms of the near-
ly incompressible thermal-transport equation are found
to be

8, T~+u VT~ —Pr 'V T~ —B,p
—u Vp~ tl, p +u Vp, (13)

rl, T~+u VT~+e 'V ul =yPr 'V'T~,

from which we obtain the compatibility condition

Q,p~+u Vp —(y —1)Pr 'V T)

+e 'V ui = —B,p" —u" Vp". (14)

Observe that the equations of nearly incompressible
heat-conduction-modified hydrodynamics are linear
about the incompressible flow, thus making them rela-
tively tractable. It is easily seen that use of (13)-(16)
yields

p +p ~i = f ~i+pi (i 7)

Thus, if the acoustic and incompressible pressure fluc-
tuations are correlated with the temperature fluctuations,
then it follows that p*+p =e, p~ in non-normalized
terms. Therefore, it is apparent that the pseudosound
theory ' ' ' relies on the assumption that temperature
and density fluctuations are correlated, though we defer
further examination of the validity of this assumption to
a subsequent report. '

Since the nearly incompressible heat-conduction-
dominated model and the pseudosound model lead to
such dramatically different results with respect to the
density and temperature correlations, it is clear that the
choice of which model to apply to a given situation is
most critical and requires detailed assumptions about
which physical processes are dominant. Evidently, inter-
pretation of solar-wind ' and interstellar data favors
the heat-conduction-modified, pseudosound picture. It
remains to be seen if other observations of low-Mach-
number gases or plasmas will reveal the correlations (12)
associated with the heat-conduction-dominated limit.
Other questions are also raised by the present discussion.
One issue is whether there are physical applications in
which importance might be attached to the distinction
between the purely passive scale behavior of the temper-
ature fluctuations in the heat-conduction-dominated case
and the distinct temperature behavior obtained for heat-
conduction-modified flows. Finally, further consequences
and properties of the two distinct sets of ideal-gas nearly
incompressible dynamical equations warrant investiga-
tion, including mathematical issues such as rigorous con-
vergence to incompressibility, ' ' ' and further study of
the dynamical properties of nearly incompressible tur-
bulence.

This research has been supported by the National Sci-
ence Foundation under Grant No. ATM-8913627 at
Bartol. G.P.Z. is supported by a Bartol Research Insti-
tute postdoctoral research fellowship.

'H. Tennekes and J. L. Lumley, A First Course in Tur-
bulence (MIT, Cambridge, 1972).

~G. K. Batchelor, Theory of Homogeneous Turbulence
(Cambridge Univ. Press, Cambridge, England, 1970).

R. H. Kraichnan and D. C. Montgomery, Rep. Prog. Phys.
43, 547 (1980).

4D. C. Montgomery, in Solar Wind Five (NASA Confer-
ence Publication No. 2260, 1983), p. 107.

SR. H. Kraichnan and S. Chen, Physica (Amsterdam) 37D,
160 (1989).

1245



VOLUME 64, NUMBER 11 PHYSICAL REVIEW LETTERS 12 MARcH 1990

W. K. George, P. D. Beuther, and R. E. A. Amdt, J. Fluid
Mech. 14$, 155 (1984).

7J. W. Armstrong, J. M. Cordes, and B. J. Rickett, Nature
(London) 291, 561 (1981).

~B. Goldstein and G. L. Siscoe, Solar Wind T~o (NASA
Special Publication No. SP-308, 1972), p. 506.

9A. Barnes, in Solar System Plasma Physics (North-
Holland, New York, 1979), p. 249.

'OD. C. Montgomery, M. R. Brown, and W. H, Matthaeus, J.
Geophys. Res. 92, 282 (1987).

' 'J. C. Higdon, Astrophys. J. 285, 109 (1984).
' J. Shebalin and D. C. Montgomery, J. Plasma Phys. 39,

339 (1988).
'3A. Majda, Compressible Fluid Flow and Systems of Con

servation Laws in Several Space Variables (Springer-Verlag,
New York, 1984).

' W. H. Matthaeus and M. R. Brown, Phys. Fluids 31, 3634
(1988).

'sG. P. Zank and W. H. Matthaeus (to be published).
'sL. Landau and E. Lifshitz, Fluid Mechanics (Pergamon,

New York, 1979).

' S. Klainerman and A. Majda, Commun. Pure Appl. Math.
34, 481 (1981).

' S. Klainerman and A. Majda, Commun. Pure Appl. Math.
35, 629 (1982).

' In deriving the incompressible heat-transfer equation, one
argues (Ref. 16) that a nonuniformly heated fluid is not in-

cornpressible in the usual sense because density varies with

temperature and so should not be regarded as constant. In-
stead, it is necessary to hold the pressure constant in (4) and
not the density in (5) (via the continuity equation). Thus, the
convective pressure derivative is assumed zero in (4). Thereaf-
ter, however, the density is assumed constant, in both the re-
duced thermal-transfer equation and the continuity equation.
Furthermore, the pressure is no longer constant, satisfying in-

stead the Poisson equation V p = —V(u Vu).
zoM. J. Lighthill, Proc. Roy. Soc. London A 211, 564 (1952).
2'H-O. Kreiss, Commun. Pure Appl. Math. 33, 399 (1980).

M. Van Dyke, Perturbation Methods in Fluid Mechanics
(Parabolic, Stanford, 1975); J. Kevorkian and J. D. Cole, Per
turbation Methods in Applied hfathematics (Springer-Verlag,
Berlin, 1981).

1246


