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Theory of Photon Bands in Three-Dimensional Periodic Dielectric Structures
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Recent experiments have found the existence of "photon bands" in periodic dielectric structures analo-
gous to the electron bands in the solid. Using a plane-wave method, we study in the scalar-wave approx-
imation the nature of the photon bands in structures where spherical "atoms" of dielectric constant e,
are periodically arranged in a background dielectric eb. The scalar-wave calculation predicts gaps in the
spectrum for e, /eb or e /be+3 or so. The nature and symmetry of the wave functions is also discussed.

PACS numbers: 41.10.Hv, 71.25.Cx, 84.90.+a

It is well known that the electron forms energy bands
in periodic crystals. The deviation from the free-particle
dispersion may be thought to be caused by the coherent
interference of scattering of electrons from individual
atoms. This leads to the formation of gaps and other
characteristic aspects in the electron band structure.
Analogously, any particle would coherently scatter and
form energy bands in a medium that provides a periodic
scattering potential with a length scale comparable to
the wavelength of the particle. Specifically this should
be true for the propagation of classical electromagnetic
(EM) waves in periodic dielectric structures. '

Some possible applications of EM wave scattering
from a collection of scatterers have been pointed out in

the literature. Of fundamental interest among these is
the possibility of Anderson localization of EM waves in

disordered dielectric structures, 2 where the strong
Couloinb-interaction effect entering the electron-lo-
calization problem is absent. A related problem is the
localization of surface-plasmon-polariton modes on a
rough metal surface and its role in the surface-
enhanced Raman scattering and other surface optical
phenomena. Kurizki and Genack have pointed out the
strong modification of atomic and molecular properties
in a volume of space where "vacuum fluctuations" are
absent. Yablonovitch has proposed that spontaneous
emission is forbidden in a situation where the photon gap
overlaps with the electronic band edge.

That such "photon bands" exist in periodic structures
has recently been demonstrated. In their experiment,
Yablonovitch and Gmitter fabricated a series of period-
ic dielectric structures out of low-loss dielectric materials
using conventional machine tools. These structures con-
tained typically 8000 "atoms" which were dielectric
spheres or simply spherical cavities filled with air. Using
microwave photons they observed the existence of a pho-
tonic band gap.

The scattering of EM waves follows the Maxwell
equations which are vector equations. The vector equa-
tions are much more complex to solve. Exact solutions
do exist in simple cases, for instance, the Mie problem '

of EM wave scattering from a single sphere. In this
Letter we show that many important aspects of the ex-
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where 8(x) is the unit step function, 8(x) 1 for x ~ 0
and zero otherwise. The summation is over all dielectric
spheres centered at R and of radius R, . The dielectric
constants of the spheres and the background are, respec-
tively, e, and eb, and c is the vacuum speed of light. The
classical wave amplitude W and its derivative VO are
continuous everywhere.

For our calculations we apply the plane-wave method
which is one of the standard methods in the electronic
band-structure problem. " Some aspects of the photon
bands have also been discussed by John and Rangara-
jan ' ' using the Korringa-Kohn-Rostoker (KKR)
method.

For a periodic arrangement of the spheres V(r) can be
expanded in terms of its Fourier components, V(G),
where G is a reciprocal-lattice vector:

The wave function +(r) follows the standard Bloch
theorem in the electronic structure problem and can be
expanded in terms of the plane waves:
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where k is the Bloch momentum that symmetry labels
the wave function. Substituting the Bloch wave function
(4) into the Helmholtz equation (1), we find that the ex-
pansion coefficients CG must satisfy the following equa-

perimental photon bands in periodic dielectric structures
can be understood in terms of scattering of the scalar
waves. The scalar-wave approach is also directly applic-
able to the scattering of acoustic waves, an area of equal-
ly active interest.

The scattering of a scalar wave +(r) from a periodic
lattice of dielectric spheres is described by the Helmholtz
wave equation

f —V' —(co'/c"-) eb+ V(r)l e(r) =0,
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tion:
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For a solution to exist, therefore, the following deter-
minant should be zero:

det (abc G + Vo o 1 =0,
where
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Roots of the determinantal equation (6) give at each k
point the photon frequencies ca, i.e., the photon bands.

The inverse Fourier transform of Eq. (3) provides us
with the expression for V(6): (b)
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where 0 is the volume of the crystal. On substituting
Eq. (2) into Eq. (9), one finds that V(6) depends only
on the magnitude

~
6 ~, a result that actually holds for

any spherically symmetric potential V(
~
r

~
). The

Fourier components V(6) are given by
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with the dielectric-sphere packing fraction P given by
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Here G—= ~6~ and Q„s is the unit-cell volume. Notice
that the potential V(6) depends on the photon energy ta

unlike in the electronic band problem. Because of this,
while in the electron problem the plane-wave method
reduces to a matrix diagonalization scheme, here we

must follow the computationally slower root-search
scheme to solve Eq. (6).

We performed the numerical calculations for the face-
centered cubic (fcc) lattice with the dielectric constants
varied between —1 and 15. The packing fraction was

varied up to P tr/342=0. 74 corresponding to close
packing. In the plane-wave expansion, Eq. (4), we find

that retaining —100 plane waves in the summation re-
sults in an accuracy better than & 2% in the calculated
photon frequency for the lower-lying modes we are pri-
marily interested here. Test calculations that used
-300 plane waves produced negligible differences.

In Fig. 1(a) we show typical photon bands for the fcc
structure. The bands are shown along important symme-

try lines in the Brillouin zone (BZ) for the case
5, eb 1, and sphere packing fraction P =0.15. Figure
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FIG. l. (a) Typical fcc photon bands calculated in the
scalar-wave approximation, compared with (b) the free-photon
fcc bands. In (a) e, 5, et, 1, and P 0.15. The linear
dispersion relation, I ck, is seen in the long-wavelength limit

k 0 in both cases. The periodic scattering potential modifies
the free-photon bands but the various symmetry modes can be
identified in (a). The crosshatched areas in (a) show gaps ex-
tending throughout the Brillouin zone. Note that the free-
photon bands (b) are applicable both for the scalar waves as
well as for the vector waves satisfying Maxwell's equations.
For the vector waves, the free-photon modes with the two dis-
tinct helicities are degenerate.

1(b) shows the free-photon fcc modes analogous to the
free-electron fcc bands now well known in the electronic
band problem. The main difference is the linear disper-
sion for the photon modes as opposed to the parabolic
dispersion relation for the electrons. We have followed
the standard Buckaert-Smolukowski-Wigner ' (BSW)
notation for the symmetry classification of various
modes. In the long-wavelength limit k 0, we see the
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The linear dispersion relation, Eq. (11),observed in Ref.
1, follows from Eq. (5) if one retains only the V(6 0)
component, an excellent approximation in the k 0 lim-
it.

In the free-photon case, various modes, for instance Xl
and X4 modes at the X point, I 1, I 2, I 1 s, and I 2s at the
I point, etc. , are degenerate. The degeneracies are re-
moved by the periodic potential that introduces gaps in

the spectrum. The magnitude of the gaps at the BZ
boundary depends primarily on the magnitudes of cer-
tain Fourier components of the potential V(G). In
essence, the potential mixes two or more degenerate
modes leading to a band splitting, an effect that is illus-

trated below for the splitting of the Xl and X4 modes.
This splitting may be estimated within a nearly-free-

photon (NFP) approximation, equivalent to the nearly-
free-electron approximation in the band problem. At the
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in the photon bands, where c is the average speed of light
in the medium,
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f
k+ Gl f and the Fourier component

V(6), given by Eq. (10), contains the photon frequency
to. The coupling of the two modes splits the degeneracy
and we have

m~ -too/(I + X) '", (i4)

where too ck, and /t, is a measure of the scattering
strength,

) =c'V(6|)/ro'. (is)

The splitting, Eq. (14), corresponds to the gap between
the X~ and X4 modes in Fig. I and it reproduces the re-
sults of the full calculation.

In Fig. 2 we show contour plots of ~%'k(r) ( for a few

photon modes on the x-y plane. For weak scatterers the
photon modes are only slightly perturbed from the free
plane waves, an effect that is illustrated in Figs. 2(a) and
2(b) by the contours of the Xl mode for two different
dielectric structures. Inside the dielectric spheres the
contours are more densely packed corresponding to the
reduction of the speed of light to the value c/e", ~ . In the
rest of Fig. 2 we show the contour plots for important
symmetry modes for the case e, -5.0 and eb 1. The
two modes W~ and L2 bound the first gap in the frequen-

cy spectrum, respectively, from below and above as seen
from Fig. 1.
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X point, k (2z/a)(1, 0,0), the two free-photon modes, k
and k+G~, with Gl =(2x/a)( —2, 0,0), are degenerate
in the NFP approximation. The periodic scattering po-
tential removes this degeneracy with the photon frequen-
cies given by Eq. (6), which if we omit the small cou-
pling to the other modes with higher frequencies leads to
the condition

FIG. 2. Contours plots of ~%'q(r) ~' for important photon
modes in the fcc structure. All contours are on the x-y plane
and for packing fraction P 0.15. The direction of the k vector
is shown by an arrow except for (e), where its projection is

shown. Dots indicate sphere positions. (a), (b) illustrate the
gradual evolution of the XI mode as the strength of the scatter-
ers is increased. (c)-(e) show contours for selected modes for
the case e, 5 and eb l.
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FIG. 3. Variation of the photon frequencies in the region of
the lowest gap at high-symmetry points in the Brillouin zone.
The crosshatched region indicates existence of a gap in the en-
tire BZ.
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In Fig. 3 we show the frequencies of various modes in

the region of the lowest gap at important symmetry
points as a function of the dielectric-sphere packing frac-
tion P for the case e, =5.0 and eb =1. Results for other
dielectric constants are summarized in Fig. 4. Since the
case P =0 corresponds to a homogeneous dielectric medi-

um with no scatterers, the frequency m tends to co=c
x

i k i/et', in this limit. Thus, et, being equal to 1, at the

X, W, and L points, ta/c takes the values 1.0, 1.118, and
0.866, respectively, in units of 2tr/a. We find that a gap
exists in the entire BZ for P approximately between 0.04
and 0.50 with the maximum value of the gap
Ato/cu = 10k occurring for the packing fraction
P=0.15. We find that when the gap exists, it is bound-
ed by the Wi and L~ modes as seen from Fig. 3. The Li
mode lies close to the Wl mode, but always below.

The scattering strength can be varied by changing the
dielectric constants e, and eb. Figure 4 shows the range
of e and P for which our calculations predict existence of

cb

FIG. 4. Condition for the existence of a gap throughout the
BZ as a function of e„eb, and P. (a) Case of dielectric
spheres packed in vacuum et, = l. A gap exists for values of ll
in the crosshatched area. Outside this range the scatterers are
not strong enough to produce a gap in the entire BZ. Below
e, = 2.8 there is no gap in the entire range of P. The dashed
line in (a) indicates the value of P corresponding to the max-
imum gap. (b) Case of "air atoms, " e, =1, with background
dielectric constant eb varied. The numerical calculations were
performed up to close packing (P =0.74); the extrapolation of
our results is indicated by the dashed curve in (b). The experi-
mental structure for which a photon gap was reported in Ref. 1

is marked by a triangle.

a gap throughout the entire BZ. We find that for eg =1,
the gap vanishes below t., =2.8. Above this value of t.„
a gap exists for values of P between two critical values as
shown in Fig. 4(a). The case corresponding to the "air
atoms" with e, =1 and a variable dielectric background
es is shown in Fig. 4(b) where a gap exists above a criti-
cal packing fraction.

We have studied here the nature of photon bands in

the scalar-wave approximation, which despite the vector
nature of the EM waves is generally found to be ade-
quate in a majority of situations. ' In fact, the celebrat-
ed and very successful diffraction theory of Kirchoff is

based on the scalar-wave description only. In spite of
this we do expect the vector nature of the EM waves to
play a significant role in the photon gaps, an effect that
remains to be investigated.
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