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We report experimental results for wave-number selection in Taylor-vortex flow with slow spatial
ramps of the Reynolds number. The accessible range of wave numbers is always much smaller than the
Eckhaus-stable range, but the selected wave number depends on the detailed nature of the ramp. For a
particular ramp, wave numbers outside the Eckhaus-stable band were selected, leading to a periodic
state of traveling vortices. The selected wave numbers and the frequencies of the periodic state agree
well with a phase-dynamical calculation by Riecke and Paap.

PACS numbers: 47.20.—k, 05.70.Ln

In extended homogeneous dissipative systems, spatially
varying patterns usually grow out of a uniform back-
ground when an external control parameter exceeds
some threshold value. The pattern selection involved in
this process has attracted much theoretical and experi-
mental attention in recent years.! The stable ranges of
the patterns are generally restricted by bulk instabilities
which limit their characteristic wave numbers to bands
of finite width. Within these bands, however, nonunique-
ness is a characteristic feature of nonlinear systems. An
interesting question which arises is whether particular
circumstances may prevail which lead to the selection of
a specific pattern from among those which are within the
stable band.

We will restrict ourselves here to the particularly sim-
ple case of one-dimensional patterns, where the interest-
ing spatial variation takes place only in one physical
direction. In that case, it was predicted by Kramer e?
al.? and observed experimentally by Dominguez-Lerma
and co-workers>* that a spatial variation of the control
parameter R (which determines the strength of the
external driving) from below to above its threshold value
resulted in a unique pattern. However, the particular
pattern chosen depends upon the details of how R varies
from its threshold value to its bulk value in the interior
of the system.?> Recently, Riecke and Paap® have pre-
dicted that it is possible to construct particular cases
where the variation of R leads to the selection of a wave
number which lies outside the band of stable states for
the homogeneous system. We report here on experi-
ments which correspond to such a case. We find that the
selection of an unstable state can indeed be achieved,
and that its selection leads to periodic transitions in the
homogeneous section of the system. In our case, these
transitions occur because the vortices in the straight sec-
tion have been compressed beyond the Eckhaus-stable
range, and each transition results in the loss of one wave-
length of the pattern. This loss is periodically replen-
ished, however, by a traveling wave (TW) moving in the
section of varying R and towards the homogeneous part.

Thus, a dynamic state is created by the selection of an
unstable state. We have measured the selected wave
numbers and TW frequencies, and find them to be in
quantitative agreement with the predictions.® This
agreement is a rather spectacular success of the phase-
dynamical methods’® which were used in the calcula-
tions.

The phenomenon studied by us differs qualitatively
from the one first suggested by Kramer et al.,? and in-
vestigated by Rehberg er al.,” where two different ramps
selected different stable wave numbers at the two ends of
a straight section. In that case the consequent wave-
number gradient produced a traveling wave from one
ramp to the other through the homogeneous part of the
system, and no instability mechanism was involved.

The system we investigated was Taylor-vortex flow'®
(TVF) between two concentric cylinders, with the inner
one rotating. The cylinders had constant radii r§° for
axial positions z > 0 with r5/r§ =0.745 cm. Here the su-
perscripts i and o stand for the inner and outer cylinders,
respectively. This straight, or homogeneous, section had
a gap do=r§—r=0.639 cm and was terminated at
z=L,d, by a rigid, nonrotating collar, which essentially
filled the gap for z > L,do. For z <0, the radii varied as
r'°=r§°+a’°z, giving a spatial ramp for the gap
d(z)=do+ (a°—a')z. At z=—L,dy, the system was
terminated by another nonrotating collar. For negative
z, the variation of the radii leads to a variation of the
control parameter (Reynolds number) with z. Thus, for
appropriate a'° it is possible to have e(z)=R(z)/
R.(z)—1=¢>0 in the homogeneous section, with
e(z) <0at z=—L,do. When a’* are vanishingly small,
this condition is predicted>° to lead to the selection of a
unique wavelength Ao of the vortex pairs in the straight
section, with Ao dependent upon a°/a‘’ and €. For finite
but small a’° a unique state is still selected, but Ao de-
pends nearly periodically upon L, and its extrema define
a small band which can, in practice, be much more nar-
row than the band of stable states. »*!"!2

Most of our measurements were for a'=0.0074 rad
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and a°=0.0151 rad, corresponding to both cylinder di-
ameters decreasing as z becomes more negative. We will
refer to this system as ramp 1. It had lengths L, vari-
able from 10 to 24, and L,=33.3, and led to the selec-
tion of a time-periodic state for €= 0.2. More limited
measurements were also made for a second ramp, which
has @' = —0.0075 rad, a®=0, and selected stable time-
independent states for our range of €. The temperature
of the apparatus was held constant to +0.01°C. The
fluid was 40% by volume glycerol and 60% water. Most
of the results reported here were obtained with flow visu-
alization obtained by adding 1 vol% of a Kalliroscope
suspension of polymeric flakes.'> Our main results were
confirmed, however, by laser-Doppler velocity measure-
ments. Wavelengths were determined with a traveling
microscope. Digitized Kalliroscope flow-visualization
contours in the axial direction were obtained with a
computer-interfaced video camera. A contour plot, con-
sisting of a time sequence of such contours each plotted
with a vertical displacement relative to the previous one,
provides a good visualization of the dynamics of the
selected time-periodic state.

In Fig. 1 we show (solid circles) one-half the wave-
length A(z) [width of a vortex pair normalized by the lo-
cal gap d(z)] together with individual vortex widths
(open circles) measured for ramp 1 as a function of posi-
tion z. Also shown in the figure is €(z). In the region
where € <0, vortices were not observable. Near :z
= —15do, € passes through zero. At that location, A(z)
has a value close to 2.0, the critical value at the onset of
TVF. As z and € increase, A(z) decreases until z =0 is
reached, after which it remains constant in the homo-
geneous section. We believe the alternating vortex
widths in the ramp are the result of a large-scale flow'!
induced by the ramp. Such a flow would tend to alter-
nately increase and decrease the amplitudes of individual
vortices. This effect has been observed before by Wim-
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FIG. 1. Individual vortex widths (open circles) and their

pairwise averages (solid circles), normalized by the local gap
d(z), as a function of axial position z for TVF in a spatially
ramped geometry. The solid line gives the value of ¢(z)
=R(z)/R.(z) — 1, with positive z corresponding to the homo-
geneous section of the apparatus.
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mer'*!5 for flow between concentric cones. As can be
seen, this effect persists for some distance into the homo-
geneous section.

In Fig. 2, we show the experimental results for the
wave numbers ¢ =27rdo/A in the homogeneous section for
both of our ramps. Each horizontal bar represents the
range of ¢ which was observable as L, was varied quasi-
statically. The data at large g are for ramp 1, and those
at small g correspond to ramp 2. The dashed lines
through the data are the predictions of Riecke and
Paap.® The data for ramp 2 remain in the stable band of
states, the limit of which is given by the Eckhaus insta-
bility*'®!” shown by the solid curve.'®* The wave num-
bers selected by ramp 1, however, reach the Eckhaus
boundary at large g for €9==0.2. Below this value of e,
a time-independent state was selected. Since the wave-
length in the homogeneous section varied by about 2%
for €2 0.15, and this corresponds to about 7% uncertain-
ty in g/q. — 1, we regard the agreement with the theory
as reasonably satisfactory.

The behavior of ramp 1 for €= 0.2 is illustrated by
the contour plots shown in Figs. 3 and 4. The region of
negative z contained a TW of vortices moving up the
ramp toward the homogeneous section. The vortices in
the homogeneous part were continually compressed by
the incoming vortices, driving them beyond the
Eckhaus-stable range. The loss of a vortex pair occurred
periodically. Although not apparent from the contour
plots, visual observation showed that the pattern retained
its cylindrical symmetry throughout the cycle, as would
be expected for the Eckhaus mechanism. In the case
shown in Fig. 3, the vortex-pair loss occurred near
z =2d; but for values of ¢ closer to 0.2, as in Fig. 4, the

(a-qc)/a.

FIG. 2. Range of experimentally observed wave numbers
(horizontal bars), as a function of ¢, for two different spatial
ramps. The dashed lines are the theoretical predictions for the
limiting case of infinitesimal ramp angles. The solid line gives
the location of the Eckhaus instability, which limits the band of
stable states.
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FIG. 3. Contour plot for ramp 1 with € =0.30. The travel-
ing wave of vortex pairs in the ramped section is apparent.
Vortex pairs are lost periodically in time near the location indi-
cated by the arrow at the abscissa. The early part of this figure
(time <200) is a transient which resulted from changing éo.

TW had a smaller speed, and the loss occurred deeper in
the interior of the homogeneous section near the arrow at
z=7d,. The details of the vortex-pair-loss mechanism
for the conditions of Fig. 3 are illustrated in Fig. 5.

In Fig. 6 we show the dimensionless angular frequency
w of the signal observed at a fixed position near z =0 as
a function of € (here time is scaled by d§/v=10.8 sec,
where v is the kinematic viscosity of the fluid). For
€0= 0.2, where the system selects an unstable wave num-
ber, @ increases from zero with increasing €. Near
€0=0.5, however, w reaches a maximum. For larger ¢,
€ is positive throughout this system, and the entire length
L, of the ramp is filled with vortices. In that case the
value of g at z=—L,d, can be less than q., and a wider
range of stable states becomes available to accommodate
more of the variation of ¢ that is required® in the ramp
section. The result is a decreasing TW frequency with
further increase in €y. For €32 0.8, w is zero once again
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FIG. 4. Contour plot as in Fig. 3, but for €0=0.20.
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FIG. 5. Details of the vortex-pair-loss process in time (arbi-
trary origin) and space under the same conditions as Fig. 3.

because beyond this point the entire required variation of
g along the ramp® can be accommodated within the
Eckhaus-stable band.

The solid and dashed lines in Fig. 6 are the frequen-
cies predicted by Riecke and Paap®'® for a'/a®=0.49
and 0.53, respectively (our apparatus had a'la®
=(0.49 +0.03). As can be seen, the prediction is quite
sensitive to the ratio of the ramp angles. In addition, in
the experimental system with nonzero a’*°, the precise
value of ey where a TW can first be observed depends
slightly upon L,, because L, determines which wave
number within the small band represented by the hor-
izontal bars in Fig. 2 is chosen when the Eckhaus bound-
ary is crossed. A third complication is that the theory
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FIG. 6. Traveling-wave frequency as a function of ¢ for one
aspect ratio (L, =18.0). The solid circles represent our mea-
surements. The solid line is the prediction for a'/a®=0.49,

while the dashed line is for a'/a°=0.53 (our apparatus had
a'/a®=0.49).
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neglects the formation of an Ekman vortex near
z=—L,do when ¢> 0 throughout the system (presum-
ably this vortex would change the effective length of the
ramped portion of the system). Finally, the theory mod-
els the actual loss of a vortex pair in the interior of the
straight section by means of a boundary condition at the
point where the ramp and the homogeneous section join.
This condition corresponds to assuming that the Eckhaus
mechanism in the interior of the straight section main-
tains a constant wave number at the ramp end equal to
that of the Eckhaus boundary at ¢ =¢p. In view of these
minor complications we regard the agreement as very
good indeed.

In this Letter we have presented experimental results
which confirm the theoretical prediction® that unstable
states can be selected in nonequilibrium systems by ap-
propriate spatial variation of the control parameter.
When such a state is selected in TVF, the instability
mechanism leads to a time-periodic state consisting of a
traveling wave of vortices in the ramped section and a
periodic vortex-pair loss in the homogeneous section. Al-
though traveling waves have been created previously in
Rayleigh-Bénard convection by the selection of different
wave numbers at the two ends of a homogeneous sec-
tion,? their creation by the selection of an unstable state
has, to our knowledge, not been observed before. Our
measurements of the selected wave numbers and of the
traveling-wave frequencies agree quantitatively with cal-
culations by Riecke and Paap® based on a phase-
dynamical approach.

We are grateful to H. Riecke for numerous helpful
discussions, and for providing us with the theoretical re-
sults in Fig. 6 prior to publication. This work was sup-
ported by the National Science Foundation through
Grant No. DMR88-14485.
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