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W'e demonstrate the observational viability of having an exactly massless dilaton field couple with

gravitational strength to most matter in the Universe. This is done by constructing a generalized
Jordan-Brans-Dicke model in which the scalar couples with different strengths to visible and to conjec-
tured "dark" matter. In this model, improved G measurements may provide nontrivial bounds on the

coupling constants of the dilaton to matter.
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Kaluza-Klein and superstring theories naturally give

rise to "dilaton fields, " i.e., to neutral scalar fields whose

background values determine the strength of some of the

coupling constants of the eA'ective four-dimensional

theory. The experimental consequences of a dilaton field

are of two sorts: (i) modification of large-scale gravita-
tional phenomena (due to the admixture of a scalar to

the usual tensor interaction), and (ii) violation of the

equivalence principle (through the dilaton-induced

space-time dependence of the locally measured eA'ective

coupling constants, notably Newton's gravitational con-

stant). Both types of eff'ects are severely constrained by

present experiments. This is why it is often hoped that
the dilatons will somehow become sufficiently massive for

cutting oA' all experimental deviations at length (or time)
scales greater than its Compton length. However, it is

not obvious that one or more massless scalars do not sur-

vive, coupled to mater with gravitational strength.
The purpose of this Letter is to prove the compatibility

between present experimental constraints and the ex-

istence of an exactly massless dilaton coupled with most

matter in the Universe with a strength comparable to

gravity. We shall prove this possibility by exhibiting a

simple model theory in which a scalar field is coupled
more strongly to dark matter than to visible matter. The
spirit of our present analysis will be phenomenological,
and we leave to future work the task of investigating how

such a theory might be derived from a more fundamental

theory. Another motivation for introducing our model is

to construct a field-theory framework justifying the usual

phenomenological analysis of the cosmological variation

of Newton's constant consisting of replacing it in the

equations of motion by a function of time, G(t): See our

result (26) which depends on a new parameter which is

independent of the usual Jordan-Brans-Dicke parameter
tot which measures the coupling of G(x) to the local

matter distribution.
The model theory that we shall analyze is a generali-

zation of the simplest scalar-tensor theory, namely the
Jordan-Brans-Dicke theory. ' The usual presentation of
this theory is given by the following action S (ignoring
boundary terms and using signature —+ + +, and

c = I):
r

yR — g"'8„4t—9,4t g' d x+S„,[y,g„„], (1)

g„,, = (16ttQy)g„, = (2tc'4 )g„, ,

cs= —(co+ -,') 't'ln(2tc'y),
(2)

(3)

where g is a constant with the same dimensions as

where g„, is the space-time metric (in what we shall call
the Jordan conformal frame), R its curvature scalar, and

to is a dimensionless coupling constant. (Note that p as

defined here is I/16tr times p as defined in Ref. 2.) The
last term in (I ) denotes the action of the matter, which

is a functional of some matter variables, collectively
denoted by y, and of the metric g„,. The functional
S [y,g] should reduce to the corresponding Minkowski
matter action, S„,[tlr, ri], when g„„g„,„and, therefore,
should contain, besides y, g„„,, and their derivatives, only

some constant parameters: masses, coupling constants,
etc.

The dimensionless coupling constant of the Jordan-
Brans-Dicke theory is severely constrained by present
observations to be co

' (0.004 (2cx limit). 3 In order to
construct a generalization of this theory which can allow

stronger couplings of the scalar field let us perform a
Weyl scaling of the metric g„, to transform the action
(1) to a more useful form. We define a new metric g„„
which defines what we will call the Einstein conformal
frame, and a new scalar field 0 by
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Newton's constant and x =Sr(a, to obtain (modulo
boundary terms) the equivalent action

R
J 2 2 g d x

2K'

+S„,[iy, e'~ g„,],
where R denotes the curvature scalar of g„,, and where

p= 1 —2p(T1

2(to+ —' ) 't' 2x'

(4)

R g" B„cr8.a
2K' 2 pc

I/2d4

+Sy [y y, e ' g„,,] +S( [((r(,e ' g„,.], (s)

In the simple case where the matter is phenomenologi-
cally represented as a set of point particles of mass m
and worldline x" =z"(X) (with g-proper time ds
= [ —g„,, (z)dz" dz'] 't ), the matter action reads

S„,[z,e '~ g„,] = —g JI me ~ ds,

which may be recast in terms of a space-time-dependent
Einstein-frame mass, m =me~, where m is the constant
Jordan-frame mass.

It is important to realize that by means of suitable
Weyl rescalings and redefinitions of the scalar field any
reasonable scalar-tensor theory has a kinetic term given

by the first two terms in (4). What distinguishes dif-
ferent scalar-tensor theories is the coupling to matter
and any possible mass or self-interaction terms. Besides
its "dilaton" nature (shifting o by a constant entails a
multiplicative change of the scale of the gravitational
couplings), the matter-scalar coupling chosen by Brans
and Dicke has two important features.

(l) All matter couplings are metric; e.g. , a appears in

the matter Lagrangian only in the combination e ~ g„,
(2) All material systems couple to the same metric,

i.e., are "freely falling" in this universal metric.
These features are motivated by the very precise ex-

periments which support the "weak equivalence princi-
ple" and the "Einstein equivalence principle. " They are
certainly very plausible assumptions for all conventional,
visible matter that we have knowledge of at present. On
the other hand, motivated, say, by the desire to reconcile
a theoretically preferred spatially flat cosmological mod-
el with the observed luminous matter density, we shall
assume here the existence of invisible matter in the
Universe. It is then not at all obvious that the invisible
matter need couple to cr with the same strength as the
visible matter.

The model. —We propose here to investigate a new
class of scalar-tensor models in which the visible matter
couples to the metric e ' g„,„while the invisible one
couples to the diflerent, but conformally related, metric
e g„, In other words, we shall investigate the conse-2Pia

quences of Lagrangians of the type

where now the basic dimensionless coupling constants, P;
with i =I, V, can be positive or negative (actually only
the relative sign matters). Then the corresponding a( s

are defined by co;+ —', =(4P, ) ' (so that td, ) ——', ).
Note that the value a(= —l (which some authors claim
to arise naturally from superstring theory ) corresponds
to P=+ l/J2. in the following, we shall investigate to
what extent observations give us constraints on P( and

V

In the Einstein conformal frame g„, the field equations
derived from the Lagrangian (5) are

G„,=cr „cr, ,, —g„,—(Vcr)2+ x2(Ty, + T(,), (6)

&o = —x (Py T +P(T'),

V Tq„=P;T'V„tr (no summation on i) . (9)
The corresponding equations in the (visible) Jordan
frame are given in the Appendix. In the approximation
of a smooth distribution of dark matter over, e.g. , solar-
system or binary-pulsar scales, these equations show that
locally our model reduces to a usual Jordan-Brans-Dicke
theory with m =co&, except for the possibly different time
dependence of the spatially asymptotic value of the sca-
lar field. To determine the latter, which is influenced by
the large-scale matter distribution, and depends on both

Py and Pt, let us consider the cosmological solutions of
our model.

Perfect-fluid distributions, i.e. , T,""=(p;+p;)u,"u
+p, g"', with g„,,u,"u = —1, can act as sources of a
Robertson-Walker metric (in the Einstein frame)

ds =g„,dx" dx ' = —dt + a (t)dl

with

(io)

dl = +r (d8 +sin Odp ),dr
1
—kr

if uP =u]', and if all physical quantities depend only on
time. Then the field equations (6) and (7) give (with an
overdot =d/dt)—

~ 2

a I

—3—= —,
' x g(p, +3p, )+cr'

a

(i4)—a '(a'cr) =x 'gp, (p, —3p-, ).
I

We will now assume that the Universe is dynamically
dominated by some kind of invisible matter, so that we
can neglect p& and p& compared to pl and pl on very

where G„„is the Einstein tensor of the metric g„„V„its
Levi-Civita connection (with &=g"'V„V„),and

T,"'=2g ' '8S—, l((r;, e ' g„,]/bg„, (g)
the stress-energy tensor of the i type of matter (i =V,I)
in the Einstein frame (all indices are moved by the g
metric and T' denotes the g trace of T„',). The invari-

2P(nance of S;[y„e ' g„„] under coordinate transformations
leads, when the y; equations of motion are satisfied, to
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large distance scales. For the moment, we shall also as-

sume that the pressure is zero. Introducing the dynami-
cal variables H =a/a, y =8, and adopting units in which

=1, we obtain a constrained dynamical system out of
(12)-(14). The constraint can be eliminated by defining
F =ka H, obtaining

y= —3Hy —3Pt(F+1)H + —, Pty',

H= ——H ——y ——FH3 2 1 2 I (is)
2FF=(F+F )H+ —y

2 H
F=O (k=0) is an invariant plane in phase space. In
view of the existence of convincing arguments (e.g. ,

inflation) for k =0 (or more exactly, for F being ex-
ponentially small) we shall limit ourselves to this subset
of solutions. (A similar but not identical treatment of
Jordan-Brans-Dicke cosmology as a dynamical system
has recently been given by Romero et al. )

The simple dynamical system (15) is written in the
Einstein frame, which is, however, not directly accessible

to observation (one would need, e.g. , a system of two
black holes, for which T„',=0, and o. =const, to make

up a clock ticking the Einstein time). Observations are
rather made with objects made of visible matter (this in-

cludes atomic clocks as well as the binary pulsar), cou-
pled to, and therefore, measuring only the "visible
metric, "

s' =e 2t"~ds -'.

a=e ' a, dt=e ' dt (18)

are the cosmological variables directly accessible to ob-
servation. Generalizing the system (15) to a y-Iaw equa-
tion of state, pt =(y —1)pt, and rewriting it in terms of a
and t, with the definitions y =do/dr, H =(da/dt)/a,
r =4 —3y, one obtains (k =0)

In this "Jordan conformal frame" (or "atomic frame")
the Robertson-Walker metric (10) becomes

ds =e '
l —dt +a (t)dl ] = —dt +a (t)dl, (17)

where

dy = —3rpt H + (6rpt pv —3)Hy + (2p v
—3rpt p v + Yi rpt )yt

=(
2 y 3rPtPv)H +(3yPv 4Pv+6rPt—Pv)Hv+( —,

'
y 2

T' y'Pv+3Pv 3rPtPv+ z rPvPt)y
dt

A study of its phase space shows that there are two re-
pellers and one attractor, which happen to be straight
lines through the origin, corresponding to power-law
solutions. The two repellers are

Pv4-(6 )'"
p ~ 3 ( ) lj2

(20)

!
The reason for the factor I+2Pv in (23) is that in2

Jordan-Brans-Dicke theory the inverse-square-law at-
traction between two static masses is due not only to
graviton exchange as in conventional general relativity
but also to the exchange of cr quanta which gives an ad-
ditional attraction. Equation (23) implies for the observ-
able (Jordan-time) variation of Newton's constant

1 H,
p ~( i )I/2

dG

dt
G =2pvy . (24)

and the attractor is
If we assume that the world is now in a state very close
(by angle) to the attractor, this becomes

2 —
y
—2rPtPv

t
3y ——,'y +r Pt —2rPtPv

dG

dt rPvPt —1+ 2 y
(25)

rptPv —I+ 2 y'
(22) or, if pt =0 (@=1 =r),

=Q(1+2Pv)e
2o) y+ 3

(23)

These correspond to the results in Ref. 8 for the special
case Pv =Pt =P, y= i.

As shown, e.g. , in Ref. 3 the value of the observable
gravitational constant on solar-system scales is given in

terms of the cosmological value of the scalar field, cr, (t),
by

4PvPt

dt I
—2PvPt

4pvpt
t

2 +Pt' 2ptpv
(26)

which generalizes the usual Jordan-Brans-Dicke resu1t. "

For highly relativistic matter (y= —', ) we find dG/dt =0,
which was to be expected from the fact that a couples to
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the trace of the energy-momentum tensor only.
Obsert. alional constraints. —We know of three in-

dependent constraints on the dimensionless coupling con-
stants Py and Pl of our model.

(i) From radar time-delay measurements,
~ Pv ~

is in-

dependently constrained to be smaller than 0.032
(Cp y ) 250, 2a limit of Ref. 9).

(ii) A firm lower limit on H or p, where Hp is the Hub-
ble constant and r p is the age of the Universe, is 0.4 (cor-
responding to the 2cr lower limits Hp

'" =48 km/sMpc,
rp

'" =7.8 Gyr quoted in Ref. 10). For the above small
values of Pv Eq. (21), with y= 1 =r, then constrains

~ Pl ~
to be smaller than 1.0 nearly independently of Pv.

This allows, for instance, the "string value" mt = —
1

( ~PI ~

=1/v ). The combination of these first two con-
straints allows

~
(dG/dt)p/Gp (, according to Eq. (26), to

be as large as 6.6&10 yr ' for the consistently ex-
treme values ~PI ~

'"=1, rp
'" =7.8 Gyr. (Note that the

sign of dG/dr is opposite to the relative sign of Pv and

Pl. ) This upper limit is within the reach of G measure-
ments.

(iii) Solar-system estimates of G/G are based essen-

tially on the Viking-lander data. Taken at their 2' lim-

its, they give (in units of 10 ' yr ') —6 & (dG/dt)p/
Gp & 10 according to Hellings et al. ,

'' and —22 & (dG/
dr)p/Gp & 18 according to an analysis of the Center for
Astrophysics group quoted in Ref. 12. The (indepen-
dent) binary-pulsar measurements ' give (2a level)
—14 & (dG/dr )p/G p & 38. As for the limits based on

primordial nuclosynthesis' let us emphasize, on the one
hand, that they strongly depend on the many simplifying
assumptions that enter the standard big-bang model,
and, on the other hand, that they do not restrict the
present value of G/G but rather the average

~ G„,„
—G „„d„~/G „,„(r„„„—1 „«~eo) (below a level —20

Therefore present observational evidence is compatible
with the existence of an exactly massless scalar field cou-
pled with gravitational strength (

~ Pl ~

—1) to dark
matter, and a possible test of the existence of such a sca-
lar could come from an improvement in the precision of
G experiments.

Appendix. —When transforming to the Jordan frame,

g„,, =exp(2Pva)g„, , (adapted to the visible matter), the
action (5) reads

S=J pR — g ti„pti, ,p g d x

+S (pvgavi j S+IVII, (2x 4) gqi ~,

and leads to Jordan-frame field equations of the form

G„,, = (T„;,+T„',)+, Iy„y, , —,
—' g„,(Vy)'f

2Q

+ —(V„V„,P
—

gq, .rjP),
1

~y =/J v T'+

where cay+ —', —:(4Py) ', all metric operations are per-
formed with g„,, and T,

"'= 2g
' —BS;(y;, P,g„,]/Sg„„

denotes the stress-energy tensor of the i type of matter in

the Jordan frame. The latter satisfy (from the invari-
ance of Sy and SI under coordinate transformations) the
conservation laws

V, T~" =0,
1Py Pl--

V&TI" =— TIV" in&,
2 Pv

and are related to their Einstein-frame counterparts by
T4'=e ' T,"'. Hence the density, pressure, and four-

velocity (for any type of matter) in the Einstein confor-

mal frame are related to those in the Jordan (atomic)
frame by p=e '

p, p=e '
p, u"=e " u".
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