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It is shown that one can convert a chaotic attractor to any one of a large number of possible attracting
time-periodic motions by making only small time-dependent perturbations of an available system pa-
rameter. The method utilizes delay coordinate embedding, and so is applicable to experimental situa-
tions in which a priori analytical knowledge of the system dynamics is not available. Important issues
include the length of the chaotic transient preceding the periodic motion, and the effect of noise. These
are illustrated with a numerical example.

PACS numbers: 05.45.+b

The presence of chaos in physical systems has been ex-
tensively demonstrated and is very common. In practice,
however, it is often desired that chaos be avoided and/or
that the system performance be improved or changed in

some way. Given a chaotic attractor, one approach
might be to make some large and possibly costly altera-
tion in the system which completely changes its dynam-
ics in such a way as to achieve the desired behavior.
Here we assume that this avenue is not available. Thus,
we address the following question: Given a chaotic at-
tractor, how can one obtain improved performance and a
desired attracting time-periodic motion by making only
small time-dependent perturbations in an accessible sys-
tern parameter?

The key observation is that a chaotic attractor typical-
ly has embedded within it an infinite number of unstable
periodic orbits. Since we wish to make only small per-
turbations to the system, we do not envision creating new

orbits with very different properties from the existing
ones. Thus, we seek to exploit the already existing un-

stable periodic orbits. Our approach is as follows: We
first determine some of the unstable low-period periodic
orbits that are embedded in the chaotic attractor. We
then examine these orbits and choose one which yields
improved system performance. Finally, we tailor our
small time-dependent parameter perturbations so as to
stabilize this already existing orbit. In this Letter we de-
scribe how this can be done, and we illustrate the method
with a numerical example. The method is very general
and should be capable of yielding greatly improved per-
formance in a wide variety of situations.

It is interesting to note that if the situation is such that
the suggested method is practical, then the presence of
chaos can be a great advantage. The point is that any
one of a number of diff'erent orbits can be stabilized, and
the choice can be made to achieve the best system per-
formance among those orbits. If, on the other hand, the
attractor is not chaotic but is, say, periodic, then small
parameter perturbations can only change the orbit
slightly. Basically we are then stuck with whatever sys-
tem performance the stable periodic orbit gives, and we
have no option for substantial improvement, short of

making large alterations in the system.
Furthermore, one may want a system to be used for

different purposes or under different conditions at
different times. Thus, depending on the use, different re-
quirements are made of the system. If the system is
chaotic, this type of multiple-use situation might be ac-
commodated without alteration of the gross system
configuration. In particular, depending on the use
desired, the system behavior could be changed by switch-
ing the temporal programming of the small parameter
perturbations to stabilize different orbits. In contrast, in

the absence of chaos, completely separate systems might
be required for each use. Thus, when designing a system
intended for multiple uses, purposely building chaotic
dynamics into the system may allow for the desired flexi-
bility. Such multipurpose flexibility is essential to higher
life forms, and we, therefore, speculate that chaos may
be a necessary ingredient in their regulation by the brain.

To simplify the analysis we consider continuous-time
dynamical systems which are three dimensional and de-
pend on one system parameter which we denote p [for
example, dx/dt =F(x,p), where x is three dimensional).
We assume that the parameter p is available for external
adjustment, and we wish to temporally program our ad-
justments of p so as to achieve improved performance.
We emphasize that our restriction to a three-dimensional
system is mainly for ease of presentation, and that the
case of higher-dimensional (including infinite-dimen-
sional) systems can be treated by similar methods.

We imagine that the dynamical equations describing
the system are not known, but that experimental time
series of some scalar-dependent variable z(t) can be
measured. Using delay coordinates with delay T one
can form a delay-coordinate vector,

X(t) =(z(t),z(t —T),z(t —2T), . . . , z(t MT)] . —

We are interested in periodic orbits and their stability
properties, and we shall use X to obtain a surface of sec-
tion for this purpose. In the surface of section, a
continuous-time-periodic orbit appears as a discrete-time
orbit cycling through a finite set of points. We require
the dynamical behavior of the surface of section map in
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neighborhoods of these points in order to study the sta-
bility of the periodic orbits. To embed a small neighbor-
hood of a point from x into X, we typically only require
as many dimensions as there are coordinates of the point.
Thus, for our purposes, M =D —

1 is generally sufticient.
(This is in contrast with M+1 =2D+1, typically re-
quired for global embedding of the original phase space
in the delay-coordinate space. ) Hence, for the case con-
sidered (D=3), our surface of section is two dimension-
al.

We suppose that the parameter p can be varied in a
small range about some nominal value po. Henceforth,
without loss of generality, we set po—=0. Let the range in

which we are allowed to vary p be ps, & p & —ps, .
Using an experimental surface of section for the

embedding vector X, we imagine that we obtain many
experimental points in the surface of section for p=0.
We denote these points (1,$2, $3, . . . , (k, where
denotes the coordinates in the surface of section at the
nth piercing of the surface of section by the orbit X(t).
For example, a common choice of the surface of section
would be z(t —MT) equals a constant, and („=[z(t„),
. . . ,z(t„—(M —1)T)], where t=t„denotes the time at
the nth piercing. From such experimentally determined
sequences it has been demonstrated that a large number
of distinct unstable periodic orbits on a chaotic attractor
can be determined. 5 We then examine these unstable
periodic orbits and select the one which gives the best
performance. Again using an experimentally determined
sequence, we obtain the stability properties of the chosen
periodic orbit (cf. Refs. 5 and 6 for discussion of how

this can be done and for descriptions of its implementa-
tion in concrete experimental cases). For the purposes of
simplicity, let us assume in what follows that this orbit is
a fixed point of the surface of section map (i.e., period
one; the case of higher period is a straightforward exten-
sion). Let X, and X„be the experimentally determined
stable and unstable eigenvalues of the surface of section
map at the chosen fixed point of the map (

~
&, ~

& 1

& ~X, ~
). Let e, and e„be the experimentally deter-

mined unit vectors in the stable and unstable directions.
Let g=gF =—0 be the desired fixed point. We then
change p slightly from p 0 to some other value p =p.
The fixed-point coordinates in the experimental surface
of section will shift from 0 to some nearby point gF(p)
and we determine this new position. For small p we ap-
proximate g=8$F(p)/Bp ~

~-0=p (F(p), which allows
an experimental determination of the vector g.

Thus, in the surface of section, near g =0, we can use
a linear approximation for the map, („+1 (F(p)
=M [(„—(F(p) ], where M is a 2 x 2 matrix. Using
(F(p) =pg we have

Cn+ I =png+ [&ueu fu +&ses fs] ' gn pug] .

[In the linearization (1), we have considered p„ to be
small and of the same order as („.] We emphasize that

g, e„, e„A,„, and k, are all experimentally accessible by
the embedding technique just discussed. In (1) f„and
f, are contravariant basis vectors defined by f, e,
=f„e„=1, f, e„=f„e,=0. Note that we have writ-
ten the location of the fixed point as p„g because we irn-

agine that we adjust p to a new value p„after each pierc-
ing of the surface of section. That is, we observe g„and
then adjust p to the value p„. Thus p„depends on („.
Further, we only envision making this adjustment when
the orbit falls near the desired fixed point for p-0.

Assume that g„ falls near the desired fixed point at
)=0 so that (1) applies. We then attempt to pick p„so
that g„~i falls on the stable manifold of g 0. That is,
we choose p„so that f„.g„~1=0. If („+1 falls on the
stable manifold of / =0, we can then set the parameter
perturbations to zero, and the orbit for subsequent time
will approach the fixed point at the geometrical rate k, .
Thus, for sufficiently small („,we can dot (1) with f„ to
obtain

(2)

which we use when the magnitude of the right-hand side
of (2) is less than ps, . When it is greater than p+, we set
p„0. We assume in (2) that the generic condition

g f„AO is satisfied. Thus, the parameter perturbations
are activated (i.e., p„&0) only if („ falls in a narrow
strip

~ g," ~
& gs„where g„"= f, („, and from (2)

=p+
~
(1 —

Xu ')g fu ~. Thus, for small p+, a typical ini-

tial condition will execute a chaotic orbit, unchanged
from the uncontrolled case, until g„ falls in the strip.
Even then, because of nonlinearity not included in (1),
the control may not be able to bring the orbit to the fixed

point. In this case the orbit will leave the strip and con-
tinue to wander chaotically as if there was no control.
Since the orbit on the uncontrolled chaotic attractor is

ergodic, at some time it will eventually satisfy
~ g„~ & (+

and also be sufficiently close to the desired fixed point
that attraction to g -0 is achieved. [In rare cases apply-
ing Eq. (2) when the trajectory enters the strip, but is

still far from 0, may result in stabilizing the wrong
periodic orbit which visits the strip. ]

Thus, we create a stable orbit, but, for a typical initial
condition, it is preceded in time by a chaotic transient in

which the orbit is similar to orbits on the uncontrolled
chaotic attractor. The length z of such a chaotic tran-
sient depends sensitively on the initial condition, and, for
randomly chosen initial conditions, has an exponential
probability distribution P(z) —exp[ —(r/(r))] for large

The average length of the chaotic transient (z) in-

creases with decreasing p~ and follows a power-law rela-
tion for small p+, (z)-ps ".

We will now derive a formula for the exponent y.
Dotting the linearized map for („+1,Eq. (1), with f„, we

obtain („'+1=0. In obtaining this result from (1) we

have substituted p„appropriate for
~
g„"

~
& gs, . We note

that the result („"+~=0 is a linearization, and typically
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has a lowest-order nonlinear correction that is quadratic.
In particular, („'=f, („ is not restricted by I

g„"
I

& g+,
and thus may not be small when the condition

I
g„" I

& g+
is satisfied. Hence the correction quadratic in g„ is

most significant. Including such a correction we have
g„"+I

= Ir((„'), where lr is a constant. Thus, if
I lrI ((,') ) g~, then I („"~l I

) (~, and attraction to

g =0 is not achieved, even though I g„" I & g+. Attraction
to (=0 is achieved when the orbit falls in the small

parallelogram P, given by I g„"
I
( g+, I

g„'
I

& (g+/
I IcI

)'~. For very small (+, an initial condition will

bounce around on the set comprising the uncontrolled
chaotic attractor for a long time before it falls in the
parallelogram P„. At any given iterate the probability of
falling in P, is p(P, ), the measure of the uncontrolled
attractor contained in P, . Thus, (r) ' =p (P, ). The
scaling of p(P, ) with g~ is

p(P, )-(& ) "[(& /I I)'"1 '-& "

10'

10

10

10

10

I I I I I I III I I I I I II I I I I I Ill.

where d„and d, are the partial pointwise dimensions for
the uncontrolled chaotic attractor at g =0 in the unstable
direction and the stable direction, respectively. Thus,
p(P, ) g, where y d„+d,/2. Since we assume the
attractor to be eff'ectively smooth in the unstable direc-
tion, d„=l. The partial pointwise dimension in the
stable direction is given in terms of the eigenvaiues at

& =0, d, -ln I)I. I/» I ~. I

' Thus,

(3)

10
10

I I I I I I I II

10 10 10

FIG. 1. (r) vs p~. Points were computed using 128 random-

ly selected initial conditions. Ao 1.4.

To study the eA'ect of noise we add a term t. 8„ to the
right-hand side of the linearized equations for g„+I, Eq.
(1), where 8„ is a random variable and e is a small pa-
rameter specifying the intensity of the noise. The quan-
tities b„are taken to have zero mean ((b„)=0), be in-

dependent ((b„b ) 0 for nI Wn), and have a probability
density independent of n. Dotting (1) with noise includ-
ed with f„we obtain („"+I=eh„", where b'„"=—f, b, .
Thus, if the noise is bounded, I

6„"
I

& 8,„, then the sta-
bility of g 0 wili not be affected by the noise if the
bound is small enough, eB,.„(g+. If this condition is

not satisfied, then the noise can kick an orbit which is in-

itially in the parallelogram P, into the region outside P, .
We are particularly interested in the case where such
kickouts are caused by low-probability tails on the prob-
ability density and are thus rare. (If they are frequent,
then our procedure is ineffective. ) In such a case the
average time to be kicked out (r') will be long. Thus, an

orbit will typically alternate between epochs of chaotic
motion of average duration (r) in which it is far from

g =0, and epochs of average length (r') in which the or-
bit lies in the parallelogram P, ~ For small enough noise
the orbit spends most of its time in P„(r')))(r), and one

might then regard the procedure as being eftective.
We now consider a specific numerical example. Our

purpose is to illustrate and test our analyses of the aver-

age time to achieve control and the eA'ect of noise. To do

this we shall utilize the Henon map, x„+~

=3 —x„+By„,y„+~ x„, where we take 8=0.3. We
assume that the quantity A can be varied by a small
amount about some value Ao. Accordingly, we write A

as 2 =Ho+@, where p is the control parameter. For the
values of Ao which we investigate, the attractor for the

map is chaotic and contains an unstable period-one
(fixed-point) orbit. The coordinates (xF,yF) of the fixed

point which is in the attractor for p=0 along with the
associated parameters and vectors appearing in Eq. (1)
may be explicitly calculated. The quantity g„appearing
in (1) is („=(x„—xF)xll+ (y„—yF)yo. To test our pre-
diction for the dependence of (r), the average time to ap-
proach (=0, on the maximum allowed size of the pa-
rameter perturbation p~, we proceed as follows. We
iterate the map with p=0 using a large number of ran-
domly chosen initial conditions until all these initial con-
ditions are distributed over the attractor (500 iterates
were typically used). We then turn on the parameter
perturbations and determine for each orbit how many
further iterates r are necessary before the orbit falls
within a circle of radius —, g+ centered at the fixed point.
We then calculate the average of these times. We do
this for many diAerent values of p+ and plot the results
as a function of p. This is shown on the log-log plot in

Fig. 1 along with the theoretical straight line of slope
given by the exponent (3). We see that the agreement is
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near the fixed point with occasional bursts into the re-
gion far from (=0, and these bursts are less frequent for
small noise levels.

In conclusion, we have shown that there is great in-

herent flexibility in situations in which the dynamical
motion is on a chaotic attractor. In particular, by using
only small (carefully chosen) parameter perturbations it
is possible to create a large variety of attracting periodic
motions and to choose amongst these periodic motions
the one most desirable.
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good although there are significant variations about the
general power-law trend. These are to be expected due
to the fractal nature of the attractor and have also been
seen in numerical calculations of the pointwise dimension
for points on chaotic attractors (cf. Grebogi, Ott, and
Yorke').

Next, we consider the issue of noise. We add terms
eb„„and eb~„ to the right-hand sides of the Henon map
equations. The random quantities b„„and b~„are in-

dependent of each other, have mean value 0 and mean-
squared value I ((b„) (br) 1), and have a Gaussian
probability density. Figure 2 shows orbit plots, x„vs n

for 1500 iterates of the noisy map with parameter per-
turbations given by (2), for two different noise levels and

p+ held fixed at p+ =0.2. As predicted the orbit stays

FIG. 2. x, vs n for two cases with the same realization of
the random vector 8. p~ 0.2 and AD=1.29 for both cases.
(a) e-3.5&10 ', (b) e-3.8x10
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The general problem of controlling chaotic systems, while
clearly very important, has, so far, received almost no atten-
tion. Two exceptions (which are quite different from our ap-
proach) are the papers of Hubler (who typically requires large
controlling signals} and Fowler [A. Hubler, Helv. Phys. Acta
62, 343 (1989); T. B. Fowler, IEEE Trans. Autom. Control 34,
201 (1989)].
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