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IVlodified Mobius Inverse Formula and Its Applications in Physics
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A new theorem of inverse formula is introduced for a kind of infinite series. Thus some new results for
important inverse problems in physics are presented in this paper. These are the inverse problems for ob-
taining the photon density of states, the inverse blackbody radiation problem for remote sensing, and the
solution for inverse Ewald summation. Of more importance, it shows the possibility of the application of
number theory to physical problems.

PACS numbers: 02.30.+g

0) A new inuerse formula —Ac.cording to the Mobius
inverse formula, ' if f(n) is any number-theoretic func-
tion and

then

8(co) - g p(n)A(co/n).
n

(7)

F(n) - f(d)
d n

then

f(n) p (d)F(n/d),
d n

(2)

This theorem is very useful for different kinds of phys-
ical problems. The rigorous proof of the theorem is
shown in the Appendix.

(2) A new formula for phonon density of states. —The
specific heat of lattice vibration is expressed as

where the sum runs over all the factors of n including 1

and n, and p(n) is the Mobius function in number
theory:

(h y/kT) 2ehv/k T

C,, (T) =rk
k /kT 2 g(v)dv,J Q (ellv/kT I 2

(8)

1 if n 1,

p(n) ' ( —1)' if n includes r distinct prime factors, (3)
0 otherwise.

where h is the Planck constant and k is the Boltzmann
constant, and the phonon density of states is normalized
to 3N:

For example, p(1) 1, p(2) = —1, p(3) = —1, p(4) 0,
p(5) —1, p(6) 1, p(7) —1, p(8) 0, p(9) 0,
p(10) 1, p(11) —1, p(12) =0, p(13) —1, p(14)
-1,p(15) 1, etc.

Now, we try to replace the number-theoretic functions
F(n) and f(n) by the common functions A(co) and
8(co), respectively, with the continuous variable co. In
this case, co is divided into n intervals, and n tends to
infinity. Notice that

and

f(d)= g f(n/d)
d n (n/d) I n

(4)

f(n/d) 8(co/d) and F(n/d) A(co/d) . (5)

Also, when we are talking about n , n is an
infinite set of numbers instead of a single number.
Therefore the summation over d in in Eqs. (1) and (2)
would be changed into summation from 1 to infinity
since all the integers can be considered as factors of the
infinite set of n. From the above, a new theorem instead
of Eqs. (1) and (2) is given by the following.

If

(9)

co (u y ) 2e u v

C,, =rk
2

g(v)dv.
ku ~o

By using Taylor's expansion, one can find that

C,, (h/ku) =rk g n(uv) e ""'g(v)dv.
n-i "p

Let co =nv, then

C,, (h/ku) =rk g (uco/n) e ""g(co/n)dco
imp

=rku e " g (co/n) g(co/n)dcodp

g(v)dv =3N .

Equation (8) holds for a crystalline lattice with r atoms
per unit cell. The problem is how to solve the integral
equation for significantly different g(v) based on very
similar curves of specific heat C,, (T). It has received at-
tention for a long time, and has not been solved up to
date.

Introducing a new parameter "coldness" as u h/kT,
it follows that

A(co) = g 8(co/n)
n 1

=rku 'L [G(co)1,
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where

g(co) =(1/co') Q p(n)G(co/n) . (i4)

From Eq. (12), it is given that

C, (h/ku)
rkv n 1 Q

r

where the inverse Laplace L, ' inverts the u space to v/n

space. Equation (15) describes a new method based on
which one can obtain g(v) from experimental data of
C,, (T). It is an exact closed form solution for this impor-
tant inverse problem. The formula is simple to apply
and can be used if specific-heat measurements of reason-
able accuracy are available.

Particularly, in the low-temperature region, experi-
ments show that

C,, (T) aiT +asT +a7T +

(h/k) 2n —
1

—(2n —1)

n~2

G(co) = g (co/n)'g(co/n)
n 1

and L[] is the Laplace operator. Based on the new

theorem presented in Sec. 1, by replacing A(co) and
B(co) by G(co) and co g(co), respectively, one can obtain

has been given much attention in recent literature.
The problem is to determine the area distribution a(T)
of a blackbody from the measured total radiation power
spectrum W(v) of the blackbody, where v is the frequen-
cy. The relation between W(v) and a(T) is given by
Planck's law as

2hv ~ a(T)dT
W v

c2 g P hv/kT (20)

u =h/kT and a(u)du = a(T)d—T,
then Eq. (20) can be rewritten as

(21)

( )
2hv' '" a(u)

d
~2 ~ 0 eMv

where uv) 0. By using a series expansion of the denom-
inator of the integrand the integral equation (22) can be
rewritten as

where h and k are the same as in Eq. (8), and c is the ve-

locity of light.
The inverse blackbody radiation problem thus consists

of solving the integral equation (20) for the area temper-
ature distribution a(T). It is important in the field of re-
mote sensing. Bojarski introduced two variables "abso-
lute coldness" u and "area-coldness distribution" a(u) so
that

Hence

G(v) =(1/rk) g (h/k) " 'a2, —~L '[u " ' ]
n~2 Let

2hv ~ „„1 uW(v) =, e ""g —a —du.
up n~] n n

IL

(23)

Therefore,

(1/rk) g (h/k) " 'a2„- v "/(2n)!.
n~2

(i7) f(u) - g (1/n)a(u/n)
n 0

and

(24)

21

'.
,

' g p(n)
2l ~ n I n

g(v) -(1/v') g p(n)G(v/n)
n 1

' 2i —
1Z—1 h

rkv' -2

C2
g(v) - W(v) .

2hv'
(25)

From Eqs. (23)-(25), f(u) is simply the inverse Laplace
transformation of g(v), i.e.,

1 g hv

rkv;-2 k

' 2i —
1

a2i —
1

(2i)!((2i) '

f(u) =L '[g(v)] .

From Eq. (24), we have

(26)

where ( is the Riemann function which can be expressed
through the Bernoulli numbers. Only this result for the
low-temperature limit was given by Weiss before, and
the method here is more concise and general. Taking
only the first term in Eq. (18), the expected Debye's ap-
proximation,

g(v) a: v',

is obtained.
0) An exact solution for inverse blackbody

radiation. —The inverse blackbody radiation problem

uf(u) = g (u/n)a(u/n) .
n 1

(27)

ua(u) = g p(n)(u/n)f(u/n),
n 1

a(u) = g [p(n)/n) f(u/n),
n I

Now, by using the modified Mobius formula [Eq. (7)],
replacing A(co) and B(co) by uf(u) and ua(u), one can
obtain
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or

a(u) =f(u) —
—,
' f(-,' ) —,' f—(-,' )+ ,' f—(—,

' )

—
7 f(7 )+ i'of(i'o ) —i'i f(i'i )

—
—,', f( —,', )+ „f(—~', )+ —,', f( —', )+ (3o)

V(x) = v (x) + v (2x) + v (3x)+ (31)

This is an exact closed form for solving the inverse black-
body radiation problem. Equation (30) was first present-
ed by Kim and Jaggard without using the simple expres-
sion [Eq. (29)]. If only the first term is taken into ac-
count, it corresponds to the Wien approximation.

(4) Conclusion and discussion A.—quite useful result
in physics from the modified inverse Mobius formula in-

dicates the potential application of number theory to
physical problems not only for the integer eigenvalue
spectrum in quantum mechanics, but also for the
different kinds of inverse problems in other branches in

physics. For example, one may consider the Ewald sum-

mation

Obviously,

( p(n)8(ro/mn)
~

~ c(co/mn) '+'.

Hence, this series is absolutely convergent since

(A3)

c comn
n 1 m 1

(A4)

g p(n)8(ro/mn) = g p(n) g 8(ro/mn)
n I m n 1 m 1

g p(n) 8(ro/mn).
k I mn k

(As)

Finally, we have

g p(n) g 8(ro/mn) =8(ro),
n l m 1

(A6)

converges. From the twofold-series theory, the terms in

Eq. (A2) can be combined arbitrarily. Therefore,

in a one-dimensional lattice, and the inverse problem is

to find v (x) from experimentally known V(x). By using
the method in the Appendix, we may find

since

g p(n)- p(n)-Si„.
mn k n k

(A7)

v (x) -V(x) —V(2x) —V(3x) —V(Sx)

+ V(6x) —V(7x) + V(l ox) + (32)

For most problems in physics, condition (Al) is well

satisfied. If we set
~
A(x)

~

~ cx '+', the inverse theorem
can be proven in a similar way.

18(x) I
~cx'+' (x &O), (Al)

where c and e are two positive constants. Let us look at
the right-hand side of Eq. (7);

g p(n)8(ro/mn) .
n 1 m 1

(A2)

which is first presented in this paper, and would be useful
for the atomic-potential design. All of these inverse
problems mentioned have fundamental significance in

physics.
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Appendix To obta.i—n convergence for the series, we

add a very common condition,
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