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Cosmic-String Evolution: A Numerical Simulation
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A system of intercommuting cosmic strings is numerically evolved in a homogeneous radiation-
dominated expanding universe. Further evidence for the existence of a "scaling" solution is presented,
and results for the long-string energy density are given. Long strings exhibit significant small-scale
structure —kinks and short-wavelength propagating modes. Net loop production is observed to be
strongly peaked at scales considerably smaller than the horizon, and reasons for this severe fragmenta-
tion are briefly discussed. The new numerical techniques employed are also described.

PACS numbers: 98.80.Cq

It has been suggested that vortex strings might appear
at a very early phase transition in the Universe. ' The
evolution of such cosmic strings is of considerable astro-
physical interest, and their existence could rule out or
constrain certain particle-physics models. In the usual

picture, cosmic strings intercommute to form closed
loops, which then lose energy through gravitational radi-
ation. For the model to succeed, this energy loss must
prevent strings from dominating the Universe. Analyt-
ic and numerical ' work by previous groups has
shown that the energy density remaining in the string
network approaches a small constant fraction of the total
energy density of the Universe. However, there is

disagreement over the value of this energy density, and
on the mechanisms by which a "scaling" solution is ap-
proached. This paper presents results of an independent
numerical simulation, and resolves some of the
diA'erences between the simulations previously carried
out by Albrecht and Turok ' and by Bennett and
Bouchet '' (AT and BB, respectively).

In a conformally flat space with metric ds =a (r)
x( —dr +dx ), a cosmic string is described by a func-
tion x(r, cr), which in the gauge x x'=0 obeys the equa-
tion of motion '

x+2—x(1 —x ) =-
a E

where the primes denote d/der. The energy of the string
is given by pa(r) fedo, where e =x' /(1 —x ), and p is

the mass per unit length of the string. Equation (1) im-

plies that the linear energy density evolves in time as
e/e = —2x'a/a.

The numerical problems arising from this equation of
motion have been delineated by BB. Beyond the non-

linearity of Eq. (1), these are due to the velocity and
string direction discontinuities (or "kinks") which are in-

troduced when two strings intercomrnute. These kinks
build up over time (every time strings intercomrnute,

four kinks are created) so the numerical scheme must
evolve them accurately. Unless the scheme is specially
tailored to handle such contact discontinuities, it is well

known that over a period of N time steps the width of the
transition typically spreads as N' +', where R is the
order of accuracy of the numerical scheme. ' AT have

approached this problem with numerical viscosity which

spreads out the kinks, and in their original work BB used

preprocessing (initial smearing).
Our evolution algorithm diA'ers from these methods.

It uses a technique drawn from the literature on hyper-
bolic conservation methods, which is designed for solving
problems involving shocks. ' Defining coordinates
a x' —ex and P x'+ ex, the equations may be rewrit-
ten in first-order form as

a=—
r

——(p —a),a ' a
a

(2)

I ——(a —p),
a

(3)

e= ——e '(e' —a p),
a

x= (p —a) .
1

25

(4)

(s)

Given the relatively slow expansion rate, the right- and
left-moving modes a, P propagate in a variable energy
background with velocities e ' and —e ', respectively.
The key point is that in flat space (e=0) the system
(2)-(S) is in conservation form

After extensive trials, we adopted a high-resolution
total-variation-nonincreasing (TVNI) algorithm. '3 The
scheme uses a five-point wide stencil to evaluate spatial
derivatives, and can be proven to be second-order accu-
rate. The algorithm will be described in greater detail
elsewhere; it is related to artificial compression methods
which use analytic estimates of the smearing rate of
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discontinuities to apply appropriate nonlinear correc-

tions, thus avoiding the use of viscosity. The string posi-

tion is updated from Eq. (5) with an interleaved two-step

Runge-Kutta algorithm.
Numerical experiments show that kinks spread out to

between three and five string points during the first few

time steps and then remain at this width for hundreds of
loop osci1lations. The periodicity of small loops is

preserved to high accuracy. Evolution and energy con-

servation are satisfactory for loops having more than six-

teen points, and excellent above twenty points

(throughout the simulations we adopt a lower cutoff' N,
of at least sixteen points). Simple analytical solutions in

a radiation-dominated expanding universe are also accu-
rately reproduced.

The second computational difficulty is that of locating
string segments which cross. We implement the optimal
solution, ' which is to break up the space (a three torus)
into N boxes where N =(box size)/~hx~. A typical
value of N is of the order 10 . Since % is then very

large, it is not practical to have an array of 10 pointers
to linked lists of points occupying the cell in question.
However, since most cells are empty, the array only con-
tains entries for occupied cells. Thus crossing detection
proceeds in two stages. An ordered list of all occupied
cells is constructed, with pointers to a linked list of the
points in those cells. One then steps through each of the
occupied cells, looking for crossings between its segments
and those in neighboring cells. This is done using the
method described by BB, where one looks for a change in

the sign of the tetrahedron formed by two segments.
The intercommutation is not allowed if it would form a
loop of less than 1V, string points.

If this condition is satisfied, the aff'ected points are
time stepped backwards to the predicted crossing time.
Spline interpolants (functions of cr) with six points taken
from each string segment are used to locate the crossing
points. The strings are then locally reparametrized by
shifting points and rescaling e along the interpolant, to
ensure that the crossing takes place halfway between the
new string points. The "previous" and "next" pointers of
the two aA'ected segments are then interchanged, and the
time-step routine is used to advance the points forward
in time to their original values. This procedure is better
than just exchanging pointers, and is also better than
linearly redistributing energy among the aA'ected points,
because the jumps in energy between points are reduced

by spreading them more widely.
In principle, the overall searching-crossing algorithm

has a computation time given by ap+bplnp, but in prac-
tice, for p = 10, the linear term dominates. The
eSciency of this algorithm can be appreciated from the
fact that it uses far less computation time than the time-

stepping routine.
The initial conditions are a random walk of correlation

length (0, generated by the method of Vachaspati and

Vilenkin ' with three slight modifications. First,
corners that appear in the random walk are rounded.
The resulting network is composed of either straight or
curved segments, with 1V~ points per straight segment
and [(n/4)N~+ —, 1 points per round corner segment
(where [ ] is the integer part). The second modification
is that nonzero initial velocities are assigned to the points
that make up the string. Because the average velocity
squared of string loops in flat space is one-half, this is
more realistic. The initial velocity has a constant magni-
tude 1/J2 at each point on the string, lies in a plane or-
thogonal to the direction of the string, and rotates by a
random angle chosen between —z and n as one moves

along the string between successive points on the (0 grid,
as shown in Fig. 1. The third modification is that the
strings are assigned a random orientation, so that the to-
tal winding numbers are not necessarily zero.

Throughout the runs the following quantities are mon-
itored to check the accuracy of the program: (i) Energy
conservation for both left and right movers (e.g. ,

gq ~ ( aq (/eq ~
). During the course of a simulation this

remains above 85%, after up to four expansion times.
Most of this energy loss can be directly accounted for by
the initial four-point smoothing of kinks after intercom-
muting. The perpendicularity gauge constraint is also
satisfactorily preserved. These constraints are much
more tightly conserved for the long strings (~ 95%), the
properties of long strings being the primary concern of
this paper. (ii) Position consistency between xz = —,

'
(Pl,

+ ak ) and the spatial derivative obtained from the posi-
tions (xk+1 —xk-~)/2ha also remains within about 3%
throughout. This is an important confirmation of the ac-
curacy of our position evolution, which is not dependent
on a reconstruction using the x'. ' ' ' (iii) Loop
mismatch fx'do was also checked and always remained
small (less than 1%). The fact that these quantities
remain small over thousands of time steps is good reason
to have confidence in the numerical methods employed.

To discuss the results of our radiation-era simulations,
time and length are measured in units of the initial hor-
izon length Ho at the start of the simulation. Physical
time is the proper time elapsed since the initial singulari-

ty, t =Ja(r)dr, and the horizon length is H(t)
=a(r) Jdr =2r Along (short) string. is defined as one
whose total energy is greater (less) than prrt. The simu-
lations begin at time to, where rp/Ho= 1/2. The scale
factor is a(t) =(2t/Ho) '~, and the initial-string density
is determined by the ratio a =Ho/go of the horizon
length to the correlation length of the initial-string net-
work. In principle, the length of the runs is restricted by
the nUmber of initial correlation-length cells because the
horizon becomes larger than the size of the numerical
box after sufficient expansion.

For initial-string velocities equal to 0 and 1/J2, the
simulations approach similar long-string densities at late
times, although the final density of the initial static net-
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FIG. 2. The long-string energy density pzr /p. The runs are
labeled by a; see Table I for the parameters of these runs.

FIG. 1. ~achaspati-Vilenkin initial conditions in a small box

split into 5' correlation cells. These are supplemented by a
random velocity winding along the string, which is indicated by
the small lines normal to the string direction.

work tends to be about slightly higher ((5%). The ini-

tially static network takes longer to relax toward scaling,
partly because it takes time for the static strings to ac-
celerate up to randomized relativistic speeds. For this

reason, an initial velocity of 1/J2 is used throughout.
For comparison with previous work, note that the addi-
tional kinetic energy makes the energy density higher
for the same initial ratio Hp/gp, for example,
(Hp/gp)aa 2' (Hp/gp) to obtain the same initial ener-

gy density.
The parameter that measures the size of the cutoff is

X=N, /N~. The eA'ect of decreasing X was investigated

by increasing W~ for N, =16. In agreement with BB, we

found that the effect on the final long-string energy den-

sity diminished as X was reduced towards 0.5. We thus
used k (0.6 for our long runs.

Figure 2 and Table I present the results of several
short and long runs. The short runs were used to bracket
the scaling solution. In these runs, the initial-string den-

sity a was varied for a fixed set of initial conditions. One
can see that the long-string energy density is attracted to
a constant value of pr /p in the range from 10 to 22, for
widely differing values of a.

The parameters of the long runs are given in Table I.
During these runs, the Universe expands in spatial
volume by a factor of over 4 . The final-string density
approaches pt /p =16~ 4 at late times, though sys-
tematic effects related to the small-loop cutoff' could
reduce it slightly further. This is in good agreement with
the work of BB, who quote a value of 20+ 10 (and
more recently'' 13.0~ 2.5), and in apparent disagree-
ment with AT, who find' a value of 50~25. The sud-
den rises (drops) in the density are associated with string
loops which suddenly move out of (into) the horizon or,
more precisely, our definition of the long-string cutoff.
They can be adequately averaged out by eye. The ener-

gy density in small loops, as expected, scales approxi-
mately like that of matter. In reality, these loops would

gradually lose their energy by gravitational radiation,
over a time scale much longer than that of the present
simulations.

Finally, we comment on some qualitative features of
the evolved string network as shown in Fig. 3. A box of

TABLE I. The parameters for five of the longest runs shown in Fig. 2. The initial
configuration has (cells) correlation cells. The ratio of scale factors gives the expansion of the
Universe. The CPU time is on a VAX-8550 computer, except for the low-resolution run 8a
which gives an approximate Cray-2 time.

Run

7

8a
8b
9a
9b

Cells

22
50
22
35
22

a(tf i
a(tp)

3.5
2.9
3.7
3.0
4.2

Time steps

1540
650

2001
1300
3100

28
14
28
28
30

16
8

16
16
18

Points

218 628
630000
218628
859 602
237858

CPU time

230
24

320
200
350
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FIG. 3. The evolved cosmic-string system, showing a cube
with side length a fraction 0.28 of the horizon.

damped out the kinks on the long strings, thus suppress-

ing the production rate for very small loops. The other
possibility was that the evolution algorithm used by BB
was numerically unstable and spontaneously generated
kinks, resulting in an over production of small loops.
Our simulations tend to favor the former explanation.

Beyond these characteristics of cosmic-string evolu-

tion, some important quantitative questions remain
unanswered, particularly with regard to the observation-
al consequences deriving from small-loop production.
The efficient and accurate numerical code we have

developed can easily be pushed to higher-resolution and

larger simulations, and these issues are being pursued vi-

gorously. '
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side length one-quarter of the horizon is illustrated after
evolution for over four expansion times. The preponder-
ance of small-scale structure —small loops, kinks, and
short-wavelength propagating modes —is immediately

apparent, despite the much larger overall long-string
correlation length. Loops are principally created on

scales much smaller than the horizon; at sizes deter-
mined by the resolution of the present simulations. Since
the minimum loop size is a fixed physical scale, by the
end of the longest simulations energy production is

strongly peaked around loops of radius ~ 10 H. Un-
like the long strings, small-loop production is not yet ob-
served to be scaling. We are currently investigating
reasons for this severe fragmentation, ' but preliminary
results indicate that low coherent velocities (v) —0. 15 on

the network correlation length are an important factor.
Such low velocities imply the collapse of large loops and
curved regions of string, the relative enhancement of
substructure, and an accompanying increase in the likeli-

hood of self-intersections. Video animations of the evolv-

ing string system are especially revealing; reconnections
between uncorrelated long strings result in significant
small-loop production by this process. The importance
of "kinkiness" and small loops has been emphasized by
BB, but it seems Fig. 3 exhibits even more small-scale
structure than their results (possibly because of the
better preservation of kinks by our numerical scheme).

Prior to this work, two possible explanations had been

suggested for the disparate findings of BB and AT. One
was that the implicit numerical viscosity used by AT
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