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We investigate the Fermi-liquid parameters and the superconducting instabilities of the 7-J model us-
ing a systematic large-N expansion. We compare our results with the predictions of the Brinkman-Rice
picture. The leading superconducting instability is in the d-wave channel and has cosK« —cosK, symme-

try and increases with doping.

PACS numbers: 71.28.+d, 74.65.+n, 75.20.Hr

There has been a recent surge of interest in the strong
correlation problem motivated by the discovery of the
heavy-electron systems' and the high-temperature super-
conductors.? Since there are no exact solutions of
strongly interacting fermion Hamiltonians in dimensions
higher than 1, a number of approaches, such as varia-
tional methods, exact diagonalization of small systems,
and Monte Carlo simulations, have all been applied to
this problem. It is believed that when the number of
particles is small the ground state is metallic, while at
half filling, when the number of particles per site equals
1, the ground state is a magnetic insulator. The theoreti-
cal challenge is to describe the strongly correlated metal-
lic state, the insulating state, and the transition between
the two as a function of doping.

A great deal of insight into the strongly correlated me-
tallic phase is due to Brinkman and Rice.? They de-
scribed the strongly correlated metallic phase as a Fermi
liquid with a magnetic susceptibility and an effective
mass inversely proportional to the proximity to half
filling. In this Letter we investigate this regime using a
large-V expansion applied to a generalization of the
large-U limit of the Hubbard model Hamiltonian, usual-
ly referred to as the ¢-J model. Using a systematic ap-
proach, which is not perturbative in the coupling con-
stants, we study the behavior of the Fermi-liquid param-
eters in the metallic phase and its superconducting insta-
bilities. Differences and similarities with the Brinkman-
Rice picture are emphasized.

The Hamiltonian that we will study is given by

t
H==23 ClCut L T ClCuCliCa ()
N ijo N jioor

subject to the system of local constraints

2 Cit Cia=<qoN . (1b)
In the z-J model, go=1/N. However, as is customary in
the heavy-fermion literature,* the constraint (1b) will be

relaxed and the parameter qo in Eq. (2) will be taken to
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be of the order of 1 to carry out a controlled 1/N expan-
sion. For simplicity we will study a square lattice in two
dimensions and ij in (1a) run over nearest neighbors.
Mean-field theories for this model were studied by sev-
eral authors,™® and a large-N expansion at half filling
was formulated by Affleck and Marston.”® They also
proposed an extension of their model away from half
filling. This extension”® is always in the weak-correla-
tion regime since the on-site repulsion is scaled as 1/N.
This should be contrasted with our model, which de-
scribes the strongly correlated situation. The J =0 limit
of this model was considered in a previous publication.’

The partition function of the model is defined by the
functional integral

B
z=fdA*dAdf*dfdb*dbdxexp[—j; a). (22)
- +|_0 +_0 N 2
= io| 5= —# |fiet b 2—bi+— ii
a %f ar Sieth a‘rb+1§'A’+"'
+ih (fil fio+bTbi —qoN) |+ H (2b)
t
H==23 fitfitno|Aii+n+t Wobif-f-nbi +c.c. (2¢0)
mn

b; is a slave boson*'? field introduced in the decomposi-
tion of the electron operator Cl= f,f,bi to convert the in-
equality constraint (1b) into a holonomic constraint en-
forced by a Lagrange multiplier A; which is time in-
dependent since the Hamiltonian commutes with the
constraint. When N=2 and ¢q¢=0.5, Eq. (2) represents
the partition function of the original ¢-J model. A;;+, is
a complex link variable used to decouple the exchange
term in the Hamiltonian (1a). The index 1 runs over
x,y and N is the number of lattice sites. u is a chemical
potential determined from Eq. (3) so as to have & holes
per site:

Yt fie =N;Ngo(l —6) . (3a)

In the large-/V limit, the partition function may be calcu-
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lated by a saddle-point approximation in the fields A, ; +,
Ai, and b;. In this paper we will restrict ourselves to a
saddle point in which the variables are uniform in space.
We have shown that this solution is stable for &t > aJ,
with @ a number smaller than 1 which depends on the
doping. The region where this saddle point is stable is
shown in Fig. 1. For J=0 and a small 6 one expects an
instability towards ferromagnetism in the Hubbard mod-
el (Nagaoka theorem). This instability is suppressed in
the large-V limit considered in this paper. The uniform
saddle-point solution is formally identical to the reso-
nating-valence-bond (RVB) uniform phase, discovered
by Baskaran, Zou, and Anderson® which has been re-
cently investigated by Ioffe and Larkin.!' It is important
to emphasize, however, that in the large-V approach, the
uniform saddle point, whenever it is stable, describes a
Fermi liquid with strong antiferromagnetic correlations.
The ground state of the model has the same Fermi sur-
face as the corresponding noninteracting system defined
by ignoring the constraint and setting J equal to zero in
Eq. (1). In this paper we will investigate the behavior of
the Fermi-liquid parameters as a function of doping and
the superconducting instabilities of the Fermi-liquid
state.
The saddle-point equations are given by

41

A= Y.cosK, f(Ex),

! (3b)
A= &]S Zk:costf(Ek) ,
b2=Ng¢6.

The summations run over the Brillouin zone. The
quasiparticle energies at N =oo are given by

bzto

Ey=-2]|A+

](cost+cosKy)+7L—;1. 4)

The effective interaction between the quasiparticles is
given, to leading order in 1/N, by the Gaussian fluctua-
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FIG. 1. Domain of stability of the Fermi-liquid phase (shad-
ed area).

tions of the Bose fields around the saddle point. In-
tegrating out the fermions and expanding to quadratic
order in the Bose fields we find the effective action

SL=3NX'(q,0)[B;j+n;(g, )X/ (—q,— ), (5)

where we introduced the notation X;=(r;,A;,rri,
AF,AY) for the fluctuating Bose fields. Here we work in
the radial gauge,'? that is A; =A+6; and b;=b(1+r;)
Xe'o’, A,-"=A(l+iA,-"+r,—’7) with n=x,y and Ii, A,’r’, I‘,’n
real fields. The inverse propagator of the Bose fields is
defined in terms of the matrix

2 2
b % Zsinz[-qg] L

N ) 2 N AZ
® N 1, (6)

i— 0
where 1;; is a 4x4 identity matrix, K+ =K+¢g/2, K-
=K —q/2, and the polarization bubbles

Zf(EK+)—f(EK_)
iy k Ex,—Ex_—iQ

AK+K-IN(K K +) 7

are defined in terms of the vertices

4t()b2 qn
AN K+ K-)=— Y cos cos(Kn) ,
n

N 2

AK+,K-)=i,
®)
A(K +,K =) =2Asin(K7) ,

A""(K +,K-)=—2Acos(Kn) .

The fields A and r are the usual slave boson fields
which mediate a hard-core repulsion between the quasi-
particles. Their physical origin is the single-occupancy
constraint. The field A" becomes a gauge field in the
continuum limit. It is decoupled from the other fields
and its propagator has mass of order 7¢6. At half filling
it describes an overdamped spin-singlet collective mode,
analogous to the resonon mode in the short-range
RVB.!} Away from half filling it mixes with charge exci-
tations and acquires a mass.

We now compute physical quantities to leading order
in 1/N. The optical conductivity is obtained by extract-
ing the g2/w term of the density-density correlation
function. The corresponding diagrams are shown in Fig.
2. The result is

o(w) =26Nqoto(A/J)6(w) . 9)

In this calculation, the propagator of the fields 4* and
A’ screen the current fluctuations, renormalizing the op-
tical mass from its bare value [Fig. 2(a)] 79 to 1¢6. In a
strongly correlated electron system, the conductivity
scales as the number of holes as one would expect. This
result is consistent with the optical sum rule for the z-J
model which can be derived following the work of Ref.
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FIG. 2. Density-density correlation function diagrams used
to compute the conductivity. The wavy line denotes the gauge-
field propagator while the fermion lines are electron quasiparti-
cle propagators.

14 on the Hubbard model.

This behavior should be contrasted with the behavior
of the static compressibility which is the Q@ =0, ¢g— 0
limit of the density-density correlation function. In this
limit one finds

Np
1+410p| o] —Jedp

(10)

Here p is the renormalized quasiparticle density of states
per spin,

Po

P~ 2 (a+8q0t0)

]

NK,—K|K',—K')=—A(K"K)Dj;(K'—=K)A (=K', —K)+A (=K' ,K)D;;(K'+ K)A(K', — K)

and
= u
= + + =——t
Po Ek:a(cost cosK, +¢€g), € 3 Gautot D)
Still different renormalizations are found in the density
of states which appears in the low-temperature specific
heat and the spin susceptibility;

_ n*TpoN _ 1EpoN
6(A+6g0t0) " % 2(a+6q0t0)

T is the temperature and up is the electron magnetic
moment. Equations (9), (10), and (11) illustrate the
basic ideas of Fermi-liquid theory in the context of an
exactly soluble model. Different physical quantities ac-
quire different renormalizations. The magnetic suscepti-
bility and the specific heat are of order 1/J close to half
filling because there is a finite density of magnetic exci-
tations which contribute to these quantities. The optical
conductivity and the compressibility, on the other hand,
probe the charge degrees of freedom and are renormal-
ized by different Landau parameters, F,' and FO, respec-
tively.

We now turn to the superconducting instabilities of
this model. They are of order 1/N and the BCS weak
coupling is justified in the framework of the 1/ expan-
sion. We write the effective interaction between elec-
trons on the Fermi surface as

C, an

(12)

with Dy, (q) =(B+1r),f' (g, =0) and determine whether there is a superconducting instability by calculating the sign

and the magnitude of the following coupling constants:

_ J@s/| e ) S @s'/ | ek | Dgi (KT(K, —K | K', —K')gi (K')

!

S ds/| v ] )gi(K)?

, (13)

TABLE I. Dimensionless superconducting coupling constants c¢,/2, with cosK« —cosK, sym-
metry, sinK sinK, symmetry, and cosK +cosK, symmetry.

5 0.15 0.3 0.5 0.7
J
cosK —cosK,
0.001 6.99%x10 3 —5.26x107? —9.50x10 7?3 —1.92x1073
0.005 —1.27x107? —6.93x10 73 —9.97x1073 —2.05%x1073
0.05 —0.114 —2.80x10 72 —1.50x10 72 —2.96x10"°
0.1 —0.294 —5.28x10 72 —2.06x1072 —3.96x1073
8 0.15 0.3 0.5 0.7
J
sinK sinK;
0.001 —2.72x10 2 —2.46x107? 3.10x10 7} 9.09x10 ™4
0.05 —1.80%10~? 2.38x10° 456x1073 1.10x10~?
0.1 —2.06x10 "2 6.56x107° 6.03x1073 1.29%10 7?3
) 0.15 0.3 0.5
J
cosK +coskK,
0.05 0.647 0.384 0.286
0.1 0.675 0.390 0.289
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and g;(K) are cubic harmonics with different symme-
tries. We considered gi(K)=cosK, —cosK,, g(K)
=sinK,sinK,, and go(K) =cosK, +cosK,. The values of
these coupling constants, for go=0.5 and for several
filling factors, are tabulated in Table I. For very small
values of J the d-wave channel with sinK| sinK, symme-
try is attractive close to half filling. However, this chan-
nel becomes repulsive for moderate values of J. This sit-
uation is reversed in the d-wave channel with cosK,
—cosK), symmetry which is very attractive close to half
filling. The origin of this attraction can be understood as
the residual interaction between the quasiparticles gen-
erated by the original superexchange interaction between
the spins. This is a screened version of Anderson’s su-
perexchange mechanism,'> which now induces pairing
between dressed quasiparticles.

It is known that for a dilute system of particles in-
teracting with a hard-core repulsion the dominant super-
conducting instability is in the p-wave channel.®'®* We
found that this attraction disappears rapidly as J is in-
creased.

In summary, we analyzed in detail the Fermi-liquid
phase of a model of strongly correlated fermions. The
Fermi-liquid renormalizations are not as simple as in the
Brinkman-Rice theory. The magnetic effects, embodied
in the mean-field parameter A, decrease the effective
mass and the magnetic susceptibility relative to the
Brinkman-Rice value. A similar renormalization was
conjectured by Anderson. 17 On the other hand, all these
effects cancel out in the optical conductivity which scales
with the number of holes, as predicted by the
Brinkman-Rice theory. The Fermi-liquid phase is stable
up to very small values of the doping. This is because
the Fermi-liquid state contains strong antiferromagnetic
correlations and takes significant advantage of the mag-
netic exchange energy. While nothing is rigorously
known about the convergence of the large-N expansion
to the physical value of N =2, we believe this expansion
gives a qualitatively correct picture when the doping is
not too small so that the Fermi-liquid phase is a good
starting point. It is then interesting to set V=2 and in-
sert the relevant parameters for the copper-oxide systems
to~1 eV and j~0.1 eV in our formulas. The Fermi
liquid is stable for § = 0.1. The leading superconducting
instability, which occurs in the d-wave (g2) channel, in-

creases with doping. For large doping the superconduct-
ing couplings in Table I are much smaller than 1, so we
have a weakly coupled superconductor. Close to half
filling the characteristic energies of the Fermi liquid
Stogot+A, with A~0.2J, are smaller than the electronic
energies to and J appearing in the Hamiltonian. The
coupling constants are close to unity indicating that the
pairing energies are comparable with the Fermi energy.
This limit is then closer to a strongly coupled supercon-
ductor.
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