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Instantons and Massless Fermions in (2+ 1) -Dimensional Lattice QED and Antiferromagnets
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Lattice U(l) instantons in 2+1 dimensions have no fermion zero modes and do not break U(2n)
Aavor symmetry. Nevertheless, instantons in the presence of massless ferrnions interact via logarithmic
potentials. These results are applied to the "flux" phase of a SU(n) antiferromagnet and the possibility

of a transition from a gapless spin-liquid state to Neel order as n decreases from 4 to 2 is discussed.

PACS numbers: 75.10.Jm, 11.10.Lm, 11.15.Ha, 12.20.Ds

Quantum antiferromagnets can be described by com-

pact U(1) gauge theories with matter fields. Since two-

dimensional antiferromagnetism underlies high-tem-

perature superconductivity, it is important to understand

how different (2+1)-dimensional U(1) gauge theories
behave. Both antiferromagnets and U(1) gauge theories
can be studied systematically via 1/n expansions. Using
this technique, Read and Sachdev recently demonstrat-

ed that the Berry's phase of instantons (topological de-

fects that are permitted because the gauge group is com-

pact) leads to valence-bond order in one particular two-

dimensional SU(n) antiferromagnet with massive

charged bosonic matter fields, in accordance with a pre-
diction by Haldane. 2 In contrast, the "flux" phase of a

diferent two-dimensional SU(n) antiferromagnet con-
tains massless relativistic fermions (the gap for fermionic
excitations vanishes at discrete points in the Brillouin
zone). In this Letter, I study instantons in the presence
of massless fermions and conclude that instantons have

no zero modes. Furthermore, the instantons interact via

logarithmic potentials. I conclude by discussing the pos-

sibility that the Neel order known to occur in the physi-

cal SU(2) antiferromagnet corresponds to the dynamical
formation of a fermion mass gap.

Instantons play a crucial role in (2+1)-dimensional
compact pure U(1) gauge theory. In particular, the

photon acquires a mass and static charges are confined

when instantons are included. However, massless fer-
mions can neutralize these effects. In one scenario, the
instantons acquire fermion zero modes that spoil the
mass generation mechanism. The SU(2) gauge group
in that model spontaneously broke via the Higgs mecha-
nism to (necessarily) compact U(1) and zero modes oc-
curred because of topologically nontrivial long-range or-
der in the Higgs field. (An index theorem for Dirac op-
erators in odd-dimensional spaces can be applied when

Higgs fields accompany the instanton. It was used in

Ref. 5 to prove the existence of zero modes. )
The compact U(l) gauge group also arises naturally

on the lattice. No Higgs fields are needed; instead, the
lattice spacing a provides the necessary cutoff to make
the instanton action ultraviolet finite. To investigate
whether zero modes still exist, I solve the problem of

continuum massless fermions in the field of a single-point
instanton. (I will show later that the wave functions are
insensitive to lattice efl'ects. ) First, consider the problem
of free fermions in spherical coordinates. The (imag-
inary-time) Lagrangian density is X = tlt ~„with
tz 1, . . . , 2n. (I consider only the case of an even num-

ber of fermion flavors; species doubling on the lattice al-

lows me to ignore the case of an odd number. ) Here

p =o ' p tit= Ilt 03 and the Pauli matrices obey the
Clifford algebra [o„cstt} b,tt. The Dirac operator p'can
be regarded as a Hamiltonian in three Euclidean dimen-
sions. Following Besson I solve for the eigenmodes by
using the identity (o" r) l. (Besson actually con-
sidered the problem of four-component fermions in four
dimensions. The two-component fermions in three di-
mensions behave rather differently. One could assemble
two two-component fermions into a single four-com-
ponent spinor, but then the 4x4 representation of the y
matrices would contain two y matrices, y4 and y5, that
anticommute with the Hamiltonian. ) Thus

Ir-(o" r")'(o p)

-(o"r") [r" p+I o" (r"&p)]

=- ( ')[a/a. -( .l)/. ].
Here l is the orbital angular momentum. It does not

commute with p' but the total angular momentum j
—=l+ —,

' o does commute since [j,o" r] [j,cr l l =0.
Therefore, any eigenmode of p' can be written as an

eigenstate of j and m=—j,. In particular, one of the two

lowest partial waves (j —,', m = —,
' ) can be written as

tit(r, e,y) =B(r)
~
t)+A(r)(o" r)

~ t) .

The l =0 radial wave function B(r) and the I =1 wave
function A(r) satisfy the following coupled differential
equations:

dB(r)/dr =iEA(r)

and

(d/dr+2/r)A (r) =iEB(r) .

These equations are solved with spherical Bessel func-
tions of the first kind: B(r) =jo(kr), A(r) = ~i j~(kr)
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with E + k [regularity at the origin forbids spherical
Bessel functions of the second kind, yp(kr) and yi(kr),
from appearingl. Note that the wave function does not
vanish at the origin —it is the analog of the s-wave solu-
tion of the free Schrodinger equation.

The boundary conditions on the wave functions are
determined by requiring the Dirac operator to be Hermi-
tian. For any two wave functions Cb and y we must have

„d xi//tcr Vcb
—„d x(Pter Vy)*.

Partial integration then implies that the following sur-
face integral vanishes:

dS pter& 04

For the particular case of p i//, this equation means that
no net current flows across the boundary so probability is

conserved. For j —,
' waves inside a spherical box of ra-

dius R, the boundary condition requires either jp(kR)
0 or ji(kR) 0; therefore the radial momentum k is

quantized.
We turn now to the problem of massless fermions in-

teracting with a single instanton placed at the origin. In-
stead of a Dirac string, I follow Wu and Yang and
define the vector potential locally by A, Ae 0 and

c ' l/2J—M+1
2J+2 I q, L+, M —i/2 I t &

and

Since all of the terms in the Hamiltonian scale as 1/r,
no bound states are possible. This observation was first
made by Dirac in 1933 for the case of a nonrelativistic
charged particle in the presence of a magnetic monopole.
For any state i//iic(r, 8, c//) with energy E c, there exists
another state of energy E ck given by i//bc(kr, 8,&)
Thus, a continuum of states exists with no gap. Note
that this argument no longer applies when Higgs fields
are present since they supply an additional length scale
that invalidates the above scaling argument. The lattice
does provide a short length scale, but does not affect the
wave functions qualitatively (see below).

The J,M eigenstates can be found using the "mono-
pole harmonics" Yq L M of Ref. 8. In the notation of
Ref. 7, these states are

i//bc(r, 8, c//) AJ(r)Pb/L, (8,y)+BJ(r)Pb/, I (8,y) .

HereL+—=J~ 2,
l/2J+M+1

y'q, L, b/+ i/2 I & &

(cos8 —1), r 6 R, ,rsin8
J—M

+M, L

' l/2

I'q, L,M+ i/2 I l &

A~
(cos8+1), r E Rb .

r sin8

(Note that this choice of gauge obeys V A-O. ) The
two overlapping regions R, and Rb are defined by R, :
0~8~x/2+6 and Rb. ir/2 —b(8(x where 0&8( ir/2. The 8 field points radially outward with strength
g/r and the wave functions defined separately in R,
and Rb are related by a gauge transformation in the re-

gion of overlap. The Hamiltonian is now given by P',

where P p
—eA. To solve for the eigenmodes, I

proceed similarly to the free case. Thus

P (cr r")[i P+icr" (r"xP)]

i(cr r") — — —
q

c) cr L cr r"

8r r r

Here q—=eg is integer or half-integer (to satisfy Dirac's
quantization condition) and I have introduced the opera-
tor L=rxP —qr". This operator obeys the angular mo-
mentuin algebra [L„Lbj =ie,b,L, However, the "a.ngu-
lar momenta" now have a minimum value of I q I [note
that L2=(rxP) +q ~ q 1 and can be either integer or
half-integer: L =

I q I, I q I +1, . . . . The analog of the
total angular momentum j is now 9 L+ 2 cr which also
commutes with o" r". The eigenstates of the Hamiltonian
can be classified according to the eigenvalues of J and
M. Now J IqI —

—,', Iq I+ 2, . . . is not necessarily
half-integer, reAecting the inAuence of the instanton.

l/2

+ J+M
2J

I q, L,M —i/2 I t & .

How does cr" r" act on the 'Pbc L ? Since it commutes
with J, it can only mix the L ~ states:

(cr"'r)&/ic, L a+ &b/, L, +b ~&br, L

where a+ b — 2q/(2J—+ 1), a b+ —2K'/2/

(2J+1), and K=(J+ —,
' ) —

q .
Consider first the lowest J Iq I

—
—,
' partial waves.

Only the L+ Iq I wave function can appear in the
lowest waves, since L — Iq I

—
1 is not an allowed ei-

genvalue. Thus, Bl(kr) 0. In particular, for an instan-
ton with the lowest possible charge (Iq I

—,
' ) the J 0

wave function is yp Ap(kp)Pp i/2, where

Pp i/i
—cos(8/2) I t &

—e'q sin(8/2) I

The radial function satisfies the following first-order
differential equation:

—i(d/dr+1/r)Ap(r) =sgn(q)EAp(r) .

The solution to this equation is Ap(r) e'""/r with E
sgn(q)k. (The singularity in the wave function at

r 0 is permitted now since the instanton field diverges
as r 0.) Note that the energy of the incoming waves
differs in sign from that of the outgoing ones. This be-
havior respects time-reversal (T) symmetry in the Ham-
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J + J+ 3 2q
dr 2 2J+1

and

2qE 'i'
+

r 2J+1 r

2qA J —2EC
' BJ

2J+1

1 2q'J———
dr 2 2J+1

2qEC
' ~J+

r 2J+1 r

2E' AJ+2qBJ
2J+1

These equations are solved with higher spherical Bessel
functions (see Ref. 7); like the free case, all the higher
waves vanish at the origin. (Again spherical Bessel func-
tions of the second kind are forbidden. Also, the bound-
ary condition at the origin eliminates them. ) Therefore,
the wave functions are insensitive to the underlying lat-
tice and should be accurate for ka « I.

Note that the lattice could have severely modified one
of the lowest partial waves and turned it into a zero
mode, but the boundary condition at large R (where the
continuum approximation should be good) eliminated it.
Evidently, there are no normalizable zero modes since all
the remaining partial waves vanish in the limit r 0. In
fact, a direct numerical evaluation of the fermion wave
functions on the lattice confirms this conclusion. ' This
result also appears to hold for instantons with nonspheri-
cal symmetry.

The fermion contribution to the effective action can be
computed for gauge configurations with no normalizable
zero modes. For the case of a constant background field
8' in continuum QED, the massless fermions can be in-

tegrated out exactly;'' the result is
. 3i4

2

F F"'
8

Pv&.ff- ", g(Y)

Here g(x) is the Riemann g function [g( —', ) =2.612)

iltonian picture, since both q and the fermion momentum

change sign under T.
The boundary condition requires

~
Ao(R) ( -0. Since

the radial wave function has no zeros, it is forbidden.
Indeed, standing J 0 waves do not exist because incom-
ing and outgoing waves cannot be superposed since they
have opposite energies. Furthermore, an additional
boundary condition must be imposed at the origin (due
to the singular nature of the wave function). Thus,

~
AD(0)

~
0 and again the J 0 wave function is for-

bidden. For instantons with larger charges the boundary
conditions eliminate the lowest J

~ q ~

—
—,
' partial

waves.
The higher partial waves (J)

~ q ~
+ —,

' ) do not suffer
from this defect since now 81(r)e0. The radial wave

functions obey the following coupled differential equa-
tions:

and F„, e„„B'. The nonanalytic form of the effective
action reflects the infrared divergences due to the mass-
less fermions. It also follows from dimensional analysis
[note that the combination eA„has the dimension
(length) ' and there are no other length scales in the
theory]. For nonconstant fields, additional terms such as
n(e 8 F "8"F„„)' and n(e 8 F "8"F,„F'~F,ti) ' are
possible.

Although lattice QED contains the length scale a, its
long-wavelength behavior is the same as the continuum
version. For example, a numerical calculation of the free
energy of massless relativistic fermions on a spatial lat-
tice and in a constant magnetic field shows the expected
~8 ~

t dependence in the small-field limit (~eB(a
«1). (This system is just the Hofstadter problem for
magnetic fluxes near tr per plaquette. )

The fermion spectrum in the presence of a single in-
stanton contains no zero modes so the action density for
an instanton can be computed. In fact, the long-wave-
length part can be determined up to an overall multipli-
cative constant: since B gr/r2, all the terms in the
effective action density have the form n/r and clearly

ff cL n/r . (Note that this simple inverse-power form
does not occur for other gauge configurations. ) Thus, a
single instanton will have an infrared logarithmically
divergent action. This divergence was noticed in a calcu-
lation of the two-point contribution to the effective ac-
tion. ' A direct calculation of the instanton action in-

volves summing the logarithms of the zeros of the fer-
mion Bessel functions; the preliminary result' for the
long-range part of the effective action is S,p nIq
xln(R/a), where I v=—2(2)q [ /3+q + (q [ ).

The infrared divergence implies that two instantons of
charge +'q at positions r, and rb interact via the (bare)
potential V(r„rb) 2nI ql (~nr, —rb ~/a) instead of the

~ r, —
rb~

' potential that occurs when dynamical mat-
ter fields are massive. In the absence of screening by di-

pole pairs, a Kosterlitz-Thouless transition into a
confined phase would occur when n satisfies 2nI iiz & 3. '

However, screening in dimensions d ) 3 apparently
weakens the logarithmic interaction to an inverse
power-law form' and the instantons are probably
deconfined at all values of n.

U(2n) flavor symmetry breaks to U(n) iIU(n) if the
fermions acquire a parity-conserving dynamical mass
term. ' Parity-nonconserving mass terms are also possi-
ble, but a parity-conserving one seems to be energetically
preferable. ' A single instanton does not induce such a
term, since the fermion spectrum remains gapless in its
presence. However, fermion masses can be generated
dynarnicaliy Pisarski ' . used a 1/n expansion and
Schwinger-Dyson equations for the fermion self-energy
to conclude that symmetry breaking in noncompact QED
occurs at all values of n (The 1/n. expansion is necessary
to systematically control infrared divergences. ) More
refined calculations of the same type' suggest that
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U(2n) breaks only for n &nq $ where n„;,=3.28. A
similar value for n„;, is reported in a recent numerical
simulation of noncompact QED. ' Since perturbative
expansions of compact and noncompact QED are identi-
cal up to irrelevant terms that do not alter the low-

energy behavior, the Schwinger-Dyson calculation also
applies to the compact theory. However, nonperturba-
tive effects due to the instanton gas may be important.
Furthermore, the conclusion that n„;, & ~ for noncom-
pact QED remains controversial.

SU(n) antiferromagnets can be described by compact
U(1) gauge theories on a spatial lattice. In particular,
the flux phase of one particular two-dimensional square-
lattice nearest-neighbor SU(n) antiferromagnet contains
massless relativistic fermions that live in the fundamen-
tal representation of U(2n). (The two Fermi points due
to lattice doubling combine, in the continuum approxi-
mation, with the n species of fermions to produce 2n
flavors. ) Again an expansion in powers of I/n (holding
a—=ne fixed) organizes the infrared divergences. The
gauge fields acquire dynamics from the fermions. In
particular, the leading-order term in the one-loop ef-
fective action is (a/8) i p i P„„A"2", where P„„—=8„,—p„p„/p2 and p is the three-momentum. Note that the
coefficient of this term is finite. Anharmonic terms,
though infrared divergent, are suppressed by powers of
a/n. Higher-derivative terms also appear but do not
affect the infrared critical behavior of the Schwinger-
Dyson equations. ' Unlike the boson antiferromagnet of
Ref. 1, instantons are not adiabatic processes in the flux

phase (since the spectrum is gapless) and it is unclear
whether they have a definite Berry's phase. If Berry's
phase is ill-defined or zero, then instantons may not gen-
erate valence-bond order.

Indeed, valence-bond order does not arise in the physi-
cal nearest-neighbor spin- —,

' SU(2) antiferromagnet;
rather lang-range spin order occurs. o This Neel order
may correspond to the symmetry-breaking pattern U(4)

U(2)igiU(2). In fact, a mass term that favors up
spins on one sublattice and down spins on the other real-
izes this pattern. In the continuum notation, this term is

m(yii pi i+ $21 @21) m(y —yii+i iraq y i)2,nowhere 1 and
2 are labels for the two Fermi points. The analysis of
Ref. 16 applies to this case, and massless particle-hole
bound states (mesons) should occur. These mesons are
the spin waves required by Goldstone's theorem. By pro-
jecting the massive-fermion wave functions onto the
physical subspace of one particle per site, the ground-
state energy of the antiferromagnet can be estimated.
(See Ref. 3 for an explanation of this method. ) The fer-
mion mass functions as a variational parameter and re-
cent work ' finds the lowest energy to be E = —0.332J

per bond (J is the antiferromagnetic exchange energy).
The optimal mass is nonzero and corresponds to a realis-
tic sublattice magnetization of about 70% of the classical
Neel value. These values are in excellent agreement
with the best Monte Carlo result (E —0.33459J
+'0.00005J and 68% sublattice magnetization) obtained
on a 32x32 lattice.

Finally, assuming n„;t &4, the ground state of the
SU(4) antiferromagnet with appropriate biquadratic
coupling (see Ref. 3) should exhibit no long-range order.
It would be interesting to test this conjecture by direct
study of the spin system since it could be the first exam-
ple, at finite n, of a two-dimensional gapless spin liquid,
resonating-valence-bond ground state.
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