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First-Principles Calculation of the Activation Energy for Diff'usion in Liquid Sodium
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We have performed the first calculation of the activation energy for self-diA'usion in a liquid metal
which contains no adjustable parameters. The calculation uses the local-density-functional theory com-
bined with the Car-Parrinello technique for molecular-dynamics simulation. The coefficient of self-
diffusion agrees well with the experimental value and fits the form D Doexp( —E,/keT), with
E, 0.099 eU, D&& 0.84&10 ' cm'/sec, compared to the most recent experimental values of E, 0.096
eU, Do 0.86&10 ' cm'/sec.

PACS numbers: 66.10.Cb, 61.20.Ja, 71.25.Lf

One of the most obvious effects of temperature is the
change of phase from solid to liquid. While the dif-
ference between a liquid and a solid is clear in everyday
life, on a microscopic level the distinction is more subtle.
Static properties such as pair-correlation functions can-
not distinguish between amorphous solids and liquids;
dynamical diffusion properties are necessary to make the
distinction. At low temperature in the absence of de-
fects, the atoms in a solid will not self-diffuse, while in a
liquid the atoms will diffuse away from their original po-
sitions. Many properties of the material affect the rate
(at a given temperature) at which atoms will diffuse.
Some obvious examples include the degree of directional,
covalent, ionic or metallic bonding, and the force con-
stants of the solid. All of these terms contribute in some
complicated manner to the activation energy for self-
diffusion, which is an experimentally accessible measure
of the temperature dependence of diffusion.

Until recently there has been no first-principles theory
of liquids and amorphous solids which has the same level

of rigor which we are accustomed to in crystalline solids.
However, in a pioneering paper' Car and Parrinello
(CP) showed that it was feasible to perform molecular-
dynamics simulations of liquids by solving the electronic
structure within the local-density approximation (LDA).
The forces on the individual ions are then determined via
the Hellmann-Feynman theorem. This eliminates the
need for empirical pair (or three-body, four-body, etc. )
potentials and opens the way to first-principles molecular
dynamics.

There are many possible applications of such a theory.
We focus here on the activation energy for self-diffusion
because of its intrinsic interest as a measure of the local
bonding, it clearly involves dynamics and temperature-
dependent effects, and it provides a good test for the un-

derlying LDA and the validity of the Born-Oppenheimer
approximation which separates the ionic and electronic
degrees of freedom.

The CP technique has been applied so far to a number
of s-p bonded materials such as Si, ' SiO2, C, Se,
As, GaAs, and to finite-sized metallic clusters. How-

ever, there have been no applications to ordinary metals
in the liquid phase. The purpose of this Letter is to
present our results for liquid sodium. We chose sodium
because (1) it is a prototype free-electron metal which
has been studied previously by empirical pair potentials;
(2) there exist neutron'n and x-ray-scattering"'2 data
for the pair-correlation function as well as measurements
of the coefficient of self-diffusion; ' ' and (3) the crys-
talline structure and its static properties at zero tempera-
ture have been studied extensively using the LDA and a
nonlocal pseudopotential. ' The discrepancy between
LDA calculations and the experimental bandwidth has
also been addressed by adding a nonlocal self-energy to
the local-density results. '

The details of our calculations are as follows. The su-
percell of our actual simulation contains 54 sodium
atoms with periodic boundary conditions. The ions are
initially held at their perfect bcc lattice positions with
lattice constant a 4.357 A. This corresponds to a den-
sity close to the experimental density of the liquid at its
melting temperature (0.927 g/cm ) and is 4.5% smaller
than the equilibrium density at 293 K. The Kohn-Sham
orbitals are expanded in a plane-wave basis with energy
(k+G) up to E~„12 Ry that leads to 5614 plane
waves at the I sampling point in the first Brillouin zone.
The parametrized form of Perdew and Zunger' for the
exchange-correlation functional and a fully nonlocal
pseudopotential ' with s nonlocality are used. With the
atoms at their crystalline positions and varying the densi-
ty a lattice constant of 3.77 A (uncorrected for the zero-
point motion) was obtained. This is reasonably close to
the experimental value of 4.23 A. Similar contractions
have been found for alkali metals by Woodward and co-
workers. The calculation of Dacorogna and Cohen'
yielded 3.98 A by using a partial core correction. Our
calculated bulk modulus of 110 kbar compares well with
106 kbar obtained by Dacorogna and Cohen. ' During
the molecular-dynamics simulation, a constant time step
h, t =1.2x10 ' sec was used in updating both ionic posi-
tions and electronic wave functions via the Verlet algo-
rithm. ' The electronic fictitious mass was chosen to be
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100 a.u. These choices ensure an accurate integration of
the equations of motion and guarantee energy conserva-
tion to better than five significant features over an obser-
vation time of several thousand time steps. In a typical
(constant-volume) molecular-dynamics run the system is

first equilibrated at a given temperature, and then ob-
served for another —1 psec in order to gather statistics.
Although this time is short compared to traditional mol-
ecular-dynamics simulations, the statistics, as shown

below, are adequate for a determination of the diffusion
constants.

A problem in simulating a liquid metal via the Car-
Parrinello technique occurs when the occupancy of states
at the Fermi level changes. These changes result in the
electrons leaving the Born-Oppenheimer surface and
thus violating one of the basic assumptions of the
method. While this effect is difficult to include con-
sistently in the fictitious Lagrangian formulation, we

have presented elsewhere22 a general solution that is con-
ceptually simple and computationally tractable. A close-

ly related question concerns the choice of supercell size
and k-point sampling. For certain supercells and k-point
samplings, the single-particle spectrum can have a pseu-

dogap, which in our case is -0.8 eV. Thus, as discussed
previously, 2 the finite supercell and k-point sampling
approximation makes the density of states less accurate
than integral properties such as electron density,
Hellmann-Feynman forces, and elastic properties which

should be reasonable, and therefore the trajectories of
the ions should be accurate.

As an indication of the reasonableness of our results,
Fig. 1 shows the calculated pair distribution function
(PDF) of liquid Na at 420 and 1402 K compared to the
x-ray-diffraction measurement. ' The prominent peak is
softened as the temperature goes up, as expected since

the ions have larger displacements. The calculated PDF
agrees well with both the x-ray- and the neutron-
scattering data. '

Changes in the coordination number give a measure of
how the local structure of the liquid diff'ers from that of
the crystal. In the bcc structure, the nearest-neighbor
shell contains eight atoms, and only slightly farther away
is the second shell containing another six. With a small
amount of disorder, the distinction between first and
second neighbors fades, and thus one can consider the
bcc structure to have a near-neighbor shell of fourteen
atoms. On the other hand, the fcc structure has a well

resolved first shell coordination number of twelve. Thus
to identify the liquid as either bcc-like or fcc-like, it is

necessary to determine whether the coordination number
is twelve or fourteen. From Fig. 1, however, the values
of the radial distances, a and b, corresponding to coordi-
nation numbers twelve and fourteen, respectively, are lo-
cated at the bottom of a broad minimum, making a
unique identification of the structure difficult. Likewise
the calculated angular distribution (Fig. 2) also supports
the above conclusion. In order to understand the evolu-
tion of the angular distribution function when the system
changes from ideal (fcc or bcc) crystalline order to a
liquid, we consider the effect of randomly displacing
atoms on the angular distribution function. In Fig. 2 we
show the effects of random (uncorrelated) displacements
from the ideal bcc or fcc structures on the angular distri-
bution functions. When these random displacements are
small, the two lattice structures can be easily dis-
tinguished from one another while for larger displace-
ments, the differences in the angular distribution func-
tion for the bcc and the fcc disappear. The latter case
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FIG. 1. The calculated pair distribution function g(r) at
420 K (solid line) and 1402 K (dotted line), and the x-ray
measured g(r) at 373 K (Ref. 12, dashed line) are shown.

Points a and b mark the calculated interatomic distances which

correspond to the coordination number twelve and fourteen, re-

spectively, at T 420 K.
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FIG. 2. The calculated angular distribution function for
liquid sodium at the average temperature of 420 K. (a) The
angular distribution function for an ideal bcc lattice (dashed
line), for a bcc lattice with small (dotted line) and large (solid
line, scaled by a factor of 4. 17 for clarity) random displace-
ment of atoms from their ideal positions. (b) Same as in (a)
for an fcc lattice.

1147



VoLUME 64, NUMBER 10 PHYSICAL REVIEW LETTERS 5 MARCH 1990

Figure 3(a) shows curves of (r2(t, T)) for Na below the
melting temperature (T ) and at four temperatures
above, in the units of d, where d is the nearest-neighbor
distance of a bcc Na structure at its liquid density at the
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FIG. 3. The calculated coeScient of self-diffusion D as a
function of inverse temperature T (K) (solid circles), com-
pared with various experimental measurements and previous
theoretical calculations using empirical pair potentials. (a)
The mean-square displacement (r'(t, T)) in the units of d' as a
function of time when the average temperature is 258 K (dot-
ted line), 407 K (dashed line), 462 K (dot-dashed line), 759 K
(long dot-dashed line), and 1402 K (solid line), where d is the
nearest-neighbor distance of a bcc Na at its experimental
liquid density (3.77 A).

closely resembles the actual angular distribution calcu-
lated for the liquid after equilibration, apart from the ac-
tual distribution having fewer small-angle pairs due to
core-core repulsion. The local order is neither bcc- or
fcc-like, but rather a combination. This lack of local or-
der reflects the small energy difference between the crys-
talline bcc and fcc phases [-10 eV (Ref. 16)] and
the lack of directional bonding (weakly correlated ionic
displacements) in a free-electron-like material such as
Na. This behavior is in contrast to that found for liquid
arsenic where an obvious order was identified.

The long-time behavior of the mean-square displace-
ment of the atoms differentiates a liquid from a solid.
For an N atom unit cell, the mean-square displacement
as a function of time t and temperature T is given by

N

(r 2(t, T)) —g (r; (t, T) —r; (0, T))
i 1

The coefficient of self-diff'usion D can be evaluated as

melting temperature (i.e., d 3.77 A). (r (r, T)) was
computed by averaging over positions along the trajecto-
ry, but no other smoothing was performed. The curve
for T & T shows no diffusion, demonstrating that the
atoms remain localized about a site. (Since there are no
voids or defects in our cells, we cannot compare to the
measured solid self-diffusion. ) The linearity of these
curves for T & T at large t indicates that these systems
are indeed in the liquid state and that the observation
times of the simulations are long enough. The increase
in slope as the temperature is raised indicates an increase
in its diffusion coefficient, as expected. The quantitative
comparison of the coefficient of self-diff'usion with exper-
imental measurements '3 '5 and previous calculations
with empirical pair potentials ' is shown in an Ar-
rhenius plot in Fig. 3. Over a wide range of tempera-
tures (400-1400 K), the results of our calculation are in

good agreement with experiment and better than any of
the previous pair-potential calculations. Note that two
different values of D were obtained by Paskin and Rah-
man using two different potentials both of which yield-
ed good pair distribution functions. The self-diffusivity
D(T) is usually fitted to the Arrhenius form

D(T) Doexp( —E,/kli T) .

The values of Do (in units of 10 cin /sec) and E, (in
units of eV/atom) obtained from the least-squares fitting
the present calculations are Do 0.84( ~ 0.06), E,

0.099(~0.004), compared against the experimental
values of Do 1.10, E, 0.105 (Ref. 13), Do 0 92,
E, 0.102 (Ref. 14), and D p 0.86 ( ~ 0.09), E,

0.096(~0.004) (Ref. 15). Our results are in excel-
lent agreement with the values obtained from the most
recent experiment. ' We are not aware of any previous
theoretical results for these values. The activation ener-

gy is much larger than the structural energy differences
among the hcp, bcc, and fcc phases of crystalline sodium
which is —10 eV/atom, '6 consistent with the uncorre-
lated nature of the angular distribution functions and
nondirectional nature of the bonding.

In conclusion, we have studied the temperature depen-
dence of diffusion properties of liquid sodium using first-
principles molecular dynamics and the local-density ap-
proximation. The pair distribution function is in good
agreement with x-ray- and neutron-scattering results.
The local coordination is intermediate between fcc and
bcc, consistent with the fact that the energy difference
between these phases in the solid is very small. Finally,
we have computed the coefficient of self-diff'usion as a
function of temperature and found Arrhenius behavior
with an activation energy of —O. l eV in good agreement
with experiment.
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